Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(2): e1011202, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36827461

RESUMO

The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Vírus Linfotrópico T Tipo 1 Humano , Proteínas dos Retroviridae , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD4-Positivos/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas dos Retroviridae/metabolismo
2.
Blood ; 140(13): 1522-1532, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35687761

RESUMO

Adult T-cell leukemia (ATL) is a lymphoid neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), which encodes the transcriptional activator Tax, which participates in the immortalization of infected T cells. ATL is classified into 4 subtypes: smoldering, chronic, acute, and lymphoma. We determined whether natural killer receptors (NKRs) were expressed in ATL. NKR expression (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2, KIR3DL2, NKG2A, NKG2C, and NKp46) was assessed in a discovery cohort of 21 ATL, and KIR3DL2 was then assessed in 71 patients with ATL. KIR3DL2 was the only NKR among those studied frequently expressed by acute-type vs lymphoma- and chronic/smoldering-type ATL (36 of 40, 4 of 16, and 1 of 15, respectively; P = .001), although acute- and lymphoma-type ATL had similar mutation profiles by targeted exome sequencing. The correlation of KIR3DL2 expression with promoter demethylation was determined by microarray-based DNA methylation profiling. To explore the role of HTLV-1, KIR3DL2 and TAX messenger RNA (mRNA) expression levels were assessed by PrimeFlow RNA in primary ATL and in CD4+ T cells infected with HTLV-1 in vitro. TAX mRNA and KIR3DL2 protein expressions were correlated on ATL cells. HTLV-1 infection triggered KIR3DL2 by CD4+ cells but Tax alone did not induce KIR3DL2 expression. Ex vivo, autologous, antibody-dependent cell cytotoxicity using lacutamab, a first-in-class anti-KIR3DL2 humanized antibody, selectively killed KIR3DL2+ primary ATL cells ex vivo. To conclude, KIR3DL2 expression is associated with acute-type ATL. Transcription of KIR3DL2 may be triggered by HTLV-1 infection and correlates with hypomethylation of the promoter. The benefit of targeting KIR3DL2 with lacutamab is being further explored in a randomized phase 2 study in peripheral T-cell lymphoma, including ATL (registered on https://clinicaltrials.gov as #NCT04984837).


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/complicações , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Leucemia-Linfoma de Células T do Adulto/patologia , RNA , RNA Mensageiro , Receptores KIR3DL2/genética
3.
Med Sci (Paris) ; 38(4): 359-365, 2022 Apr.
Artigo em Francês | MEDLINE | ID: mdl-35485896

RESUMO

Retroviruses exploit the RNA polymerase II transcription machinery for the transcription of their genes. This is the case of Human T-lymphotropic virus type 1 (HTLV-1), the retrovirus responsible for adult T-cell leukemia and for various inflammatory diseases. HTLV-1 transcription is under the control of the viral protein Tax, which exhibits an original mode of action since it does not rely on direct promoter interaction but rather on the recruitment of various cellular factors and cofactors of transcription. The factors that Tax recruits are involved in the initial step of promoter activation but also in the subsequent steps of the transcription process itself. This review describes this particular mechanism of viral transcription, from the epigenetic release of the viral promoter to the elongation of the neosynthesized viral silencing transcripts.


Title: Tax, marionnettiste de la transcription du HTLV-1. Abstract: Les rétrovirus sont des virus dont le génome est constitué d'un ARN rétrotranscrit en ADN dans la cellule, qui s'intègre alors dans le génome cellulaire. La transcription du génome rétroviral intégré est ensuite réalisée par la machinerie de transcription de l'ARN polymérase II. Dans le cas du virus T-lymphotrope humain de type 1 (HTLV-1, pour human T-lymphotropic virus type 1), rétrovirus responsable de la leucémie aiguë de l'adulte et de maladies inflammatoires, la transcription est contrôlée par la protéine virale Tax. Celle-ci agit selon un mode d'action original car le mécanisme activateur ne repose pas sur une interaction directe avec le promoteur viral, mais sur le recrutement de différents facteurs et cofacteurs cellulaires de la transcription. Les facteurs cellulaires recrutés par Tax sont impliqués dans l'activation initiale du promoteur, mais également dans les étapes ultérieures du processus de transcription lui-même. Cette revue décrit ce mécanisme particulier de transcription virale, de la levée de la répression transcriptionnelle jusqu'à l'élongation des transcrits viraux néosynthétisés.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Linhagem Celular , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Regiões Promotoras Genéticas
4.
Leukemia ; 35(3): 764-776, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32555298

RESUMO

Adult T-cell leukemia/lymphoma (ATL) carries a poor prognosis even in indolent subtypes. We performed targeted deep sequencing combined with mapping of HTLV-1 proviral integration sites of 61 ATL patients of African and Caribbean origin. This revealed mutations mainly affecting TCR/NF-kB (74%), T-cell trafficking (46%), immune escape (29%), and cell cycle (26%) related pathways, consistent with the genomic landscape previously reported in a large Japanese cohort. To examine the evolution of mutational signatures upon disease progression while tracking the viral integration architecture of the malignant clone, we carried out a longitudinal study of patients who either relapsed or progressed from an indolent to an aggressive subtype. Serial analysis of relapsing patients identified several patterns of clonal evolution. In progressing patients, the longitudinal study revealed NF-kB/NFAT mutations at progression that were present at a subclonal level at diagnosis (allelic frequency < 5%). Moreover, the presence in indolent subtypes of mutations affecting the TCR/NF-kB pathway, whether clonal or subclonal, was associated with significantly shorter time to progression and overall survival. Our observations reveal the clonal dynamics of ATL mutational signatures at relapse and during progression. Our study defines a new subgroup of indolent ATLs characterized by a mutational signature at high risk of transformation.


Assuntos
Biomarcadores Tumorais/genética , Evolução Clonal , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Mutação , Adolescente , Adulto , Idoso , Progressão da Doença , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
5.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024775

RESUMO

Human T-cell lymphotropic virus type 1 (HTLV-1) Tax oncoprotein is required for viral gene expression. Tax transactivates the viral promoter by recruiting specific transcription factors but also by interfering with general transcription factors involved in the preinitiation step, such as TFIIA and TFIID. However, data are lacking regarding Tax interplay with TFIIH, which intervenes during the last step of preinitiation. We previously reported that XPB, the TFIIH subunit responsible for promoter opening and promoter escape, is required for Tat-induced human-immunodeficiency virus promoter transactivation. Here, we investigated whether XPB may also play a role in HTLV-1 transcription. We report that Tax and XPB directly interact in vitro and that endogenous XPB produced by HTLV-1-infected T cells binds to Tax and is recruited on proviral LTRs. In contrast, XPB recruitment at the LTR is not detected in Tax-negative HTLV-1-infected T cells and is strongly reduced when Tax-induced HTLV-1 LTR transactivation is blocked. XPB overexpression does not affect basal HTLV-1 promoter activation but enhances Tax-mediated transactivation in T cells. Conversely, downregulating XPB strongly reduces Tax-mediated transactivation. Importantly, spironolactone (SP)-mediated inhibition of LTR activation can be rescued by overexpressing XPB but not XPD, another TFIIH subunit. Furthermore, an XPB mutant defective for the ATPase activity responsible for promoter opening does not show rescue of the effect of SP. Finally, XPB downregulation reduces viability of Tax-positive but not Tax-negative HTLV-1-transformed T cell lines. These findings reveal that XPB is a novel cellular cofactor hijacked by Tax to facilitate HTLV-1 transcription.IMPORTANCE HTLV-1 is considered the most potent human oncovirus and is also responsible for severe inflammatory disorders. HTLV-1 transcription is undertaken by RNA polymerase II and is controlled by the viral oncoprotein Tax. Tax transactivates the viral promoter first via the recruitment of CREB and its cofactors to the long terminal repeat (LTR). However, how Tax controls subsequent steps of the transcription process remains unclear. In this study, we explore the link between Tax and the XPB subunit of TFIIH that governs, via its ATPase activity, the promoter-opening step of transcription. We demonstrate that XPB is a novel physical and functional partner of Tax, recruited on HTLV-1 LTR, and required for viral transcription. These findings extend the mechanism of Tax transactivation to the recruitment of TFIIH and reinforce the link between XPB and transactivator-induced viral transcription.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Transativadores/metabolismo , Fator de Transcrição TFIIH/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene tax/metabolismo , Células HEK293 , Infecções por HTLV-I/virologia , Humanos , Regiões Promotoras Genéticas , Sequências Repetidas Terminais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Replicação Viral
6.
Front Microbiol ; 10: 819, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080441

RESUMO

Human T cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. Two viral proteins, Tax-1 and HTLV-1 basic leucine zipper factor (HBZ), play important roles in the pathogenesis of both diseases. We recently demonstrated that HBZ, previously considered a nuclear protein, is exclusively localized in the cytoplasm of peripheral blood mononuclear cells (PBMCs) of HAM/TSP patients. Here, the analysis of a larger panel of HAM/TSP cases confirmed that HBZ is a cytoplasmic protein, while Tax-1 preferentially localized in the cytoplasm with fewer speckle-like dots in the nucleus. More importantly, here we report for the first time that HBZ, when expressed in asymptomatic carriers (AC), is also confined in the cytoplasm. Similarly, Tax-1 was preferentially expressed in the cytoplasm in a significant proportion of AC. Interestingly, in both HAM/TSP and AC patients, the expression of HBZ and Tax-1 was rarely found in the same cell. We observed only few cases coexpressing the two oncoprotein in a very limited number of cells. In representative AC and HAM/TSP patients, cells expressing cytoplasmic HBZ were almost exclusively found in the CD4+ T cell compartment and very rarely in CD8+ T cells. Interestingly, at least in the cases analyzed, the expression of thymocite-expressed molecule involved in selection (THEMIS) is dispensable for the cytoplasmic localization of HBZ in both AC and HAM/TSP. The study of an HTLV-1-immortalized cell line established from an HAM/TSP patient confirmed HBZ as a resident cytoplasmic protein not shuttling between the cytoplasm and nucleus. These results extend our previous observation on the dichotomy of HBZ localization between HAM/TSP and ATL, pointing to the exclusive either cytoplasmic or nuclear localization in the two diseased states, respectively. Moreover, they show a rather selective expression in distinct cells of either HBZ or Tax-1. The unprecedented observation that HBZ is expressed only in the cytoplasm in AC strongly suggests a progressive modification of HBZ localization during the disease states associated to HTLV-1 infection. Future studies will clarify whether the distinct HBZ intracellular localization is a marker or a causative event of disease evolution.

8.
Oncotarget ; 8(32): 52256-52268, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881727

RESUMO

Mutations in TET2, encoding one of the TET members responsible for the conversion of DNA cytosine methylation to hydroxymethylation (5-hmc), have been recently described in Human T-lymphotropic virus type 1-associated adult T-cell leukemia/lymphoma (ATLL). However, neither the amount of genomic 5-hmc in ATLL tumor cells nor TET2 expression has been studied yet. In this study, we analyzed these two parameters as well as the mutational status of TET2 in ATLL patients. By employing a direct in situ approach, we documented that tumor T cells infiltrating lymph nodes exhibit low level of 5-hmc compared to residual normal T cells. Furthermore, this 5-hmc defect was more pronounced in tumor T cells from acute patients than from chronic ones and correlated with reduced expression of TET2 protein. TET2 variations were found in 14 patients (20%), including 13 with aggressive forms. Strikingly, 9 of the 14 patients showed the same variation (SNP rs72963007), whose frequency in ATLL patients was significantly higher than that of an ethnically matched control population (13% vs. 5%). However, no reduction of 5-hmc was found in PBMC from individuals possessing the variant rs72963007 TET2 allele, as compared to wild-type individuals. In contrast, a robust correlation was observed between 5-hmc and the levels of TET2 mRNA. Finally, loss of 5-hmc and TET2 downregulation both correlated with poor survival. These findings demonstrate that ATLL progression coincides with loss of genomic 5-hmc and indicate that downregulation of TET2, rather than TET2 mutations, is the key mechanism involved in 5-hmc modulation during ATLL progression.

9.
PLoS Pathog ; 13(7): e1006518, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742148

RESUMO

The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway and identify new key molecular actors involved in the assembly of the Tax-dependent transactivation complex.


Assuntos
Produtos do Gene tax/metabolismo , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Linfócitos T/virologia , beta-N-Acetil-Hexosaminidases/metabolismo , Acetilglucosamina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene tax/genética , Infecções por HTLV-I/enzimologia , Infecções por HTLV-I/genética , Infecções por HTLV-I/metabolismo , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , N-Acetilglucosaminiltransferases/genética , Processamento de Proteína Pós-Traducional , Linfócitos T/enzimologia , Linfócitos T/metabolismo , Transcrição Gênica , beta-N-Acetil-Hexosaminidases/genética
10.
PLoS Pathog ; 13(2): e1006224, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28222186

RESUMO

During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Inata/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Quimiocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Imunofluorescência , Bactérias Gram-Negativas/imunologia , Células HEK293 , Células HeLa , Heptoses/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Immunoblotting , Imunoprecipitação , Neisseria meningitidis/imunologia , Salmonella typhimurium/imunologia , Shigella flexneri/imunologia
11.
PLoS One ; 9(10): e109601, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295863

RESUMO

HIV-1 spreads by cell-free particles and through direct cell contacts. To discriminate between these two modes of dissemination, an assay in which the cells are cultured under shaking conditions impairing cell-to-cell transmission has been described. We addressed the impact of shaking on HIV-1 particle infectivity. Kinetics of HIV-1 infection in static or shaking conditions confirmed that HIV-1 replication is reduced in mobile lymphocyte T cells. Strikingly, the infectivity of viruses produced by mobile lymphocytes was dramatically reduced. In parallel, the amount of envelope protein present on these particles showed a continuous decrease over time. We conclude that inefficient HIV-1 replication in mobile lymphocytes in this experimental system is not only due to avoidance of viral cell-to-cell transfer but also to the loss of infectivity of the viral particles due to the alteration of the composition and functionality of the particles produced by these lymphocytes. It is important to take these observations into account when studying viral transmission under shaking conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Movimento Celular , HIV-1/fisiologia , Linfócitos T/citologia , Linfócitos T/virologia , Vírion/fisiologia , Linhagem Celular , Membrana Celular/virologia , Regulação Viral da Expressão Gênica , HIV-1/metabolismo , Humanos , Vírion/metabolismo , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
12.
J Virol ; 88(18): 10655-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24991007

RESUMO

UNLABELLED: Whether NF-κB promoter transactivation by the human T-cell leukemia virus type 1 (HTLV-1) Tax protein requires Tax SUMOylation is still a matter of debate. In this study, we revisited the role of Tax SUMOylation using a strategy based on the targeting of Ubc9, the unique E2 SUMO-conjugating enzyme. We show that either a catalytically inactive form of Ubc9 (Ubc9-C93S) or Ubc9 small interfering RNA (siRNA) dramatically reduces Tax conjugation to endogenous SUMO-1 or SUMO-2/3, demonstrating that as expected, Tax SUMOylation is under the control of the catalytic activity of Ubc9. We further report that a non-SUMOylated Tax protein produced in 293T cells is still able to activate either a transfected or an integrated NF-κB reporter promoter and to induce expression of an NF-κB-regulated endogenous gene. Importantly, blocking Ubc9 activity in T cells also results in the production of a non-SUMOylated Tax that is still fully functional for the activation of a NF-κB promoter. These results provide the definitive evidence that Tax SUMOylation is not required for NF-κB-driven gene induction. IMPORTANCE: Human T-cell leukemia virus type 1 is able to transform CD4(+) T lymphocytes. The viral oncoprotein Tax plays a key role in this process by promoting cell proliferation and survival, mainly through permanent activation of the NF-κB pathway. Elucidating the molecular mechanisms involved in NF-κB pathway activation by Tax is therefore a key issue to understand HTLV-1-mediated transformation. Tax SUMOylation was initially proposed to be critical for Tax-induced NF-κB promoter activation, which was challenged by our later observation that a low-level-SUMOylated Tax mutant was still functional for activation of NF-κB promoters. To clarify the role of Tax SUMOylation, we set up a new approach based on the inhibition of the SUMOylation machinery in Tax-expressing cells. We show that blocking the SUMO-conjugating enzyme Ubc9 abolishes Tax SUMOylation and that a non-SUMOylated Tax still activates NF-κB promoters in either adherent cells or T cells.


Assuntos
Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , NF-kappa B/genética , Ativação Transcricional , Produtos do Gene tax/genética , Infecções por HTLV-I/enzimologia , Infecções por HTLV-I/genética , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Sumoilação , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
13.
J Virol ; 87(2): 1123-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135727

RESUMO

Permanent activation of the NF-κB pathway by the human T cell leukemia virus type 1 (HTLV-1) Tax (Tax1) viral transactivator is a key event in the process of HTLV-1-induced T lymphocyte immortalization and leukemogenesis. Although encoding a Tax transactivator (Tax2) that activates the canonical NF-κB pathway, HTLV-2 does not cause leukemia. These distinct pathological outcomes might be related, at least in part, to distinct NF-κB activation mechanisms. Tax1 has been shown to be both ubiquitinated and SUMOylated, and these two modifications were originally proposed to be required for Tax1-mediated NF-κB activation. Tax1 ubiquitination allows recruitment of the IKK-γ/NEMO regulatory subunit of the IKK complex together with Tax1 into centrosome/Golgi-associated cytoplasmic structures, followed by activation of the IKK complex and RelA/p65 nuclear translocation. Herein, we compared the ubiquitination, SUMOylation, and acetylation patterns of Tax2 and Tax1. We show that, in contrast to Tax1, Tax2 conjugation to endogenous ubiquitin and SUMO is barely detectable while both proteins are acetylated. Importantly, Tax2 is neither polyubiquitinated on lysine residues nor ubiquitinated on its N-terminal residue. Consistent with these observations, Tax2 conjugation to ubiquitin and Tax2-mediated NF-κB activation is not affected by overexpression of the E2 conjugating enzyme Ubc13. We further demonstrate that a nonubiquitinable, non-SUMOylable, and nonacetylable Tax2 mutant retains a significant ability to activate transcription from a NF-κB-dependent promoter after partial activation of the IKK complex and induction of RelA/p65 nuclear translocation. Finally, we also show that Tax2 does not interact with TRAF6, a protein that was shown to positively regulate Tax1-mediated activation of the NF-κB pathway.


Assuntos
Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 2 Humano/patogenicidade , NF-kappa B/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina/metabolismo , Acetilação , Células HeLa , Humanos , Células Jurkat , Processamento de Proteína Pós-Traducional
14.
Front Microbiol ; 3: 378, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109932

RESUMO

The deltaretroviruses human T cell lymphotropic virus type 1 (HTLV-1) and human T cell lymphotropic virus type 2 (HTLV-2) have long been believed to differ from retroviruses in other genera by their mode of transmission. While other retroviruses were thought to primarily spread by producing cell-free particles that diffuse through extracellular fluids prior to binding to and infecting target cells, HTLV-1 and HTLV-2 were believed to transmit the virus solely by cell-cell interactions. This difference in transmission was believed to reflect the fact that, relative to other retroviruses, the cell-free virions produced by HTLV-infected cells are very poorly infectious. Since HTLV-1 and HTLV-2 are primarily found in T cells in the peripheral blood, spread of these viruses was believed to occur between infected and uninfected, T cells, although little was known about the cellular and viral proteins involved in this interaction. Recent studies have revealed that the method of transmission of HTLV is not unique: other retroviruses including human immunodeficiency virus (HIV) are also transmitted from cell-to-cell, and this method is dramatically more efficient than cell-free transmission. Moreover, cell-cell transmission of HTLV-1, as well as HIV, can occur following interactions between dendritic cells and T cells, as well as between T cells. Conversely, other studies have shown that cell-free HTLV-1 is not as poorly infectious as previously thought, since it is capable of infecting certain cell types. Here we summarize the recent insights about the mechanisms of cell-cell transmission of HTLV-1 and other retroviruses. We also review in vitro and in vivo studies of infection and discuss how these finding may relate to the spread of HTLV-1 between individuals.

15.
Retrovirology ; 9: 77, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23009398

RESUMO

BACKGROUND: The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4⁺ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. RESULTS: In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4⁺ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. CONCLUSIONS: These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4⁺ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation.


Assuntos
Produtos do Gene tax/metabolismo , Espaço Intranuclear/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Ativação Transcricional , Substituição de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Produtos do Gene tax/genética , Genes Reporter , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Quinase I-kappa B/metabolismo , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Microscopia Confocal , NF-kappa B/fisiologia , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteína SUMO-1/metabolismo , Transdução de Sinais , Sumoilação , Transcrição Gênica , Ubiquitinação
16.
Adv Cancer Res ; 113: 85-120, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22429853

RESUMO

The human T-cell lymphotropic virus type-I (HTLV-I) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL) and of tropical spastic paraparesis/HTLV-I-associated myelopathy. Constitutive NF-κB activation by the viral oncoprotein Tax plays a crucial role in the induction and maintenance of cellular proliferation, transformation, and inhibition of apoptosis. In an attempt to provide a general view of the molecular mechanisms of constitutive Tax-induced NF-κB activation, we summarize in this review the recent body of literature that supports a major role for Tax posttranslational modifications, chiefly ubiquitination, and SUMOylation, in the NF-κB activity of Tax. These modifications indeed participate in the control of Tax subcellular localization and modulate its protein-protein interaction potential. Tax posttranslational modifications, which highlight the ability of HTLV-I to optimize its limited viral genome size, might represent an attractive target for the design of new therapies for ATL.


Assuntos
Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T do Adulto/genética , NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional/genética , Apoptose , Proliferação de Células , Transformação Celular Neoplásica , Produtos do Gene tax/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucemia-Linfoma de Células T do Adulto/virologia , Linfócitos/virologia , NF-kappa B/genética , Paraparesia Espástica Tropical/virologia , Sumoilação
17.
PLoS One ; 7(1): e30130, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272285

RESUMO

BACKGROUND: Cell-to-cell virus transmission of Human immunodeficiency virus type-1 (HIV-1) is predominantly mediated by cellular structures such as the virological synapse (VS). The VS formed between an HIV-1-infected T cell and a target T cell shares features with the immunological synapse (IS). We have previously identified the human homologue of the Drosophila Discs Large (Dlg1) protein as a new cellular partner for the HIV-1 Gag protein and a negative regulator of HIV-1 infectivity. Dlg1, a scaffolding protein plays a key role in clustering protein complexes in the plasma membrane at cellular contacts. It is implicated in IS formation and T cell signaling, but its role in HIV-1 cell-to-cell transmission was not studied before. METHODOLOGY/PRINCIPAL FINDINGS: Kinetics of HIV-1 infection in Dlg1-depleted Jurkat T cells show that Dlg1 modulates the replication of HIV-1. Single-cycle infectivity tests show that this modulation does not take place during early steps of the HIV-1 life cycle. Immunofluorescence studies of Dlg1-depleted Jurkat T cells show that while Dlg1 depletion affects IS formation, it does not affect HIV-1-induced VS formation. Co-culture assays and quantitative cell-to-cell HIV-1 transfer analyses show that Dlg1 depletion does not modify transfer of HIV-1 material from infected to target T cells, or HIV-1 transmission leading to productive infection via cell contact. Dlg1 depletion results in increased virus yield and infectivity of the viral particles produced. Particles with increased infectivity present an increase in their cholesterol content and during the first hours of T cell infection these particles induce higher accumulation of total HIV-1 DNA. CONCLUSION: Despite its role in the IS formation, Dlg1 does not affect the VS and cell-to-cell spread of HIV-1, but plays a role in HIV-1 cell-free virus transmission. We propose that the effect of Dlg1 on HIV-1 infectivity is at the stage of virus entry.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Comunicação Celular , HIV-1/metabolismo , Proteínas de Membrana/metabolismo , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Células Cultivadas , Colesterol/metabolismo , Técnicas de Cocultura , DNA Viral/genética , DNA Viral/metabolismo , Proteína 1 Homóloga a Discs-Large , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , HIV-1/genética , HIV-1/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/virologia , Células Jurkat , Cinética , Proteínas de Membrana/genética , Microscopia Confocal , Microscopia Eletrônica , Interferência de RNA , Linfócitos T/ultraestrutura , Linfócitos T/virologia , Replicação Viral/genética
18.
Virologie (Montrouge) ; 16(3): 148-157, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065871

RESUMO

The identification of the cellular receptor used by viruses to enter their target cells is always a challenge and to date entry receptors remain to be identified for a variety of pathogenic human viruses. Human T-lymphotropic virus type 1 (HTLV-1), the unique oncogenic retrovirus in human, was identified in the early 1980 's. The nature of its entry receptor has remained a mystery for over 20 years, until the independent identification of three proteins presenting the expected criteria, the glucose transporter Glut1, Neuropilin 1, a VEGF receptor, and heparan sulfate proteoglycans. In this review, we summarize the data pertaining to HTLV-1 entry molecules and present a new model, in which these three proteins successively intervene during the entry process.

19.
Viruses ; 3(6): 794-810, 2011 06.
Artigo em Inglês | MEDLINE | ID: mdl-21994754

RESUMO

The initial step in retroviral infection involves specific interactions between viral envelope proteins (Env) and specific receptors on the surface of target cells. For many years, little was known about the entry receptors for HTLV-1. During this time, however, functional domains of the HTLV-1 Env were identified by analyzing the effects of neutralizing antibodies and specific mutations in Env on HTLV-1 infectivity. More recent studies have revealed that HTLV-1 infectivity involves interactions with three different molecules: heparan sulfate proteoglycans (HSPG), the VEGF-165 receptor Neuropilin 1 (NRP-1) and glucose transporter type 1 (GLUT1). Here, we revisit previously published data on the functional domains of Env in regard to the recent knowledge acquired about this multi-receptor complex. We also discuss the similarities and differences between HTLV-1 and other deltaretroviruses in regards to receptor usage.


Assuntos
Produtos do Gene env/química , Produtos do Gene env/metabolismo , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Produtos do Gene env/genética , Infecções por HTLV-I/genética , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/química , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Estrutura Terciária de Proteína , Receptores Virais/genética
20.
Blood ; 117(1): 190-9, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20959607

RESUMO

The human T-lymphotropic virus type I oncoprotein Tax is critical for T-cell transformation, acting mainly through nuclear factor kappa B essential modulator (NEMO) binding and subsequent nuclear factor-κB activation. Tax localizes to Tax nuclear bodies and to the centrosome and is subjected to ubiquitylation and small ubiquitin-like modifier (SUMO)ylation, which are both necessary for complete transcriptional activation. Using the photoconvertible fluorophore Dendra-2 coupled with live video confocal microscopy, we show for the first time that the same Tax molecule shuttles among Tax nuclear bodies and between these nuclear bodies and the centrosome, depending on its posttranslational modifications. Ubiquitylation targets Tax to nuclear bodies to which NEMO is recruited and subsequently SUMOylated. We also demonstrate that Tax nuclear bodies contain the SUMOylation machinery including SUMO and the SUMO conjugating enzyme Ubc9, strongly suggesting that these nuclear bodies represent sites of active SUMOylation. Finally, both ubiquitylation and SUMOylation of Tax control NEMO targeting to the centrosome. Altogether, we are proposing a model where both ubiquitylation and SUMOylation of Tax control the shuttling of Tax and NEMO between the cytoplasmic and nuclear compartments.


Assuntos
Núcleo Celular/metabolismo , Centrossomo/fisiologia , Produtos do Gene tax/fisiologia , Quinase I-kappa B/metabolismo , Sumoilação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Western Blotting , Células Cultivadas , Citoplasma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Quinase I-kappa B/genética , Rim/citologia , Rim/metabolismo , Pulmão/citologia , Pulmão/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Ativação Transcricional , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...