Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(8)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37628630

RESUMO

Heritability studies represent an important tool to investigate the main sources of variability for complex diseases, whose etiology involves both genetics and environmental factors. In this paper, we aimed to estimate multiple sclerosis (MS) narrow-sense heritability (h2), on a liability scale, using extended families ascertained from affected probands sampled in the Sardinian province of Nuoro, Italy. We also investigated the sources of MS liability variability among shared environment effects, sex, and categorized year of birth (<1946, ≥1946). The latter can be considered a proxy for different early environmental exposures. To this aim, we implemented a Bayesian liability threshold model to obtain posterior distributions for the parameters of interest adjusting for ascertainment bias. Our analysis highlighted categorized year of birth as the main explanatory factor, explaining ~70% of MS liability variability (median value = 0.69, 95% CI: 0.64, 0.73), while h2 resulted near to 0% (median value = 0.03, 95% CI: 0.00, 0.09). By performing a year of birth-stratified analysis, we found a high h2 only in individuals born on/after 1946 (median value = 0.82, 95% CI: 0.68, 0.93), meaning that the genetic variability acquired a high explanatory role only when focusing on this subpopulation. Overall, the results obtained highlighted early environmental exposures, in the Sardinian population, as a meaningful factor involved in MS to be further investigated.


Assuntos
Família Estendida , Esclerose Múltipla , Humanos , Teorema de Bayes , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Clima , Exposição Ambiental
2.
Life (Basel) ; 12(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888189

RESUMO

This work aimed at estimating narrow-sense heritability, defined as the proportion of the phenotypic variance explained by the sum of additive genetic effects, via Haseman-Elston regression for a subset of 56 plasma protein levels related to Multiple Sclerosis (MS). These were measured in 212 related individuals (with 69 MS cases and 143 healthy controls) obtained from 20 Sardinian families with MS history. Using pedigree information, we found seven statistically significant heritable plasma protein levels (after multiple testing correction), i.e., Gc (h2 = 0.77; 95%CI: 0.36, 1.00), Plat (h2 = 0.70; 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68; 95%CI: 0.27, 1.00), Sod1 (h2 = 0.58; 95%CI: 0.18, 0.96), Irf8 (h2 = 0.56; 95%CI: 0.19, 0.99), Ptger4 (h2 = 0.45; 95%CI: 0.10, 0.96), and Fadd (h2 = 0.41; 95%CI: 0.06, 0.84). A subsequent analysis was performed on these statistically significant heritable plasma protein levels employing Immunochip genotyping data obtained in 155 healthy controls (92 related and 63 unrelated); we found a meaningful proportion of heritable plasma protein levels' variability explained by a small set of SNPs. Overall, the results obtained, for these seven MS-related proteins, emphasized a high additive genetic variance component explaining plasma levels' variability.

3.
Life (Basel) ; 12(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35207439

RESUMO

Here we investigate protein levels in 69 multiple sclerosis (MS) cases and 143 healthy controls (HC) from twenty Sardinian families to search for promising biomarkers in plasma. Using antibody suspension bead array technology, the plasma levels of 56 MS-related proteins were obtained. Differences between MS cases and HC were estimated using Linear Mixed Models or Linear Quantile Mixed Models. The proportion of proteins level variability, explained by a set of 119 MS-risk SNPs as to the literature, was also quantified. Higher plasma C9 and CYP24A1 levels were found in MS cases compared to HC (p < 0.05 after Holm multiple testing correction), with protein level differences estimated as, respectively, 0.53 (95% CI: 0.25, 0.81) and 0.42 (95% CI: 0.19, 0.65) times plasma level standard deviation measured in HC. Furthermore, C9 resulted in both statistically significantly higher relapsing-remitting MS (RRMS) and secondary-progressive MS (SPMS) compared to HC, with SPMS showing the highest differences. Instead, CYP24A1 was statistically significantly higher only in RRMS as compared to HC. Respectively, 26% (95% CI: 10%, 44%) and 16% (95% CI: 9%, 39%) of CYP24A1 and C9 plasma level variability was explained by known MS-risk SNPs. Our results highlight C9 and CYP24A1 as potential biomarkers in plasma for MS and allow us to gain insight into molecular disease mechanisms.

4.
Curr Issues Mol Biol ; 43(3): 1778-1793, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34889895

RESUMO

Multiple Sclerosis (MS) is a complex multifactorial autoimmune disease, whose sex- and age-adjusted prevalence in Sardinia (Italy) is among the highest worldwide. To date, 233 loci were associated with MS and almost 20% of risk heritability is attributable to common genetic variants, but many low-frequency and rare variants remain to be discovered. Here, we aimed to contribute to the understanding of the genetic basis of MS by investigating potentially functional rare variants. To this end, we analyzed thirteen multiplex Sardinian families with Immunochip genotyping data. For five families, Whole Exome Sequencing (WES) data were also available. Firstly, we performed a non-parametric Homozygosity Haplotype analysis for identifying the Region from Common Ancestor (RCA). Then, on these potential disease-linked RCA, we searched for the presence of rare variants shared by the affected individuals by analyzing WES data. We found: (i) a variant (43181034 T > G) in the splicing region on exon 27 of CUL9; (ii) a variant (50245517 A > C) in the splicing region on exon 16 of ATP9A; (iii) a non-synonymous variant (43223539 A > C), on exon 9 of TTBK1; (iv) a non-synonymous variant (42976917 A > C) on exon 9 of PPP2R5D; and v) a variant (109859349-109859354) in 3'UTR of MYO16.


Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Variação Genética , Haplótipos , Homozigoto , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Alelos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Itália , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
5.
Artigo em Inglês | MEDLINE | ID: mdl-32432099

RESUMO

Multiple Sclerosis (MS) exhibits considerable heterogeneity in phenotypic expression, course, prognosis and response to therapy. This suggests this disease involves multiple, as yet poorly understood, causal mechanisms. In this work we assessed the possible causal link between gene expression level of five selected genes related to the pro-inflammatory NF-κB signaling pathway (i.e., CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10) in ten different brain tissues (i.e., cerebellum, frontal cortex, hippocampus, medulla, occipital cortex, putamen, substantia nigra, thalamus, temporal cortex and intralobular white matter) and MS. We adopted a two-stage Mendelian Randomization (MR) approach for the estimation of the causal effects of interest, based on summary-level data from 20 multiplex Sardinian families and data provided by the United Kingdom Brain Expression Consortium (UKBEC). Through Radial-MR and Cochrane's Q statistics we identified and removed genetic variants which are most likely to be invalid instruments. To estimate the total causal effect, univariable MR was carried out separately for each gene and brain region. We used Inverse-Variance Weighted estimator (IVW) as main analysis and MR-Egger Regression estimator (MR-ER) and Weighted Median Estimator (WME) as sensitivity analysis. As these genes belong to the same pathway and thus they can be closely related, we also estimated their direct causal effects by applying IVW and MR-ER within a multivariable MR (MVMR) approach using set of genetic instruments specific and common (composite) to each multiple exposures represented by the expression of the candidate genes. Univariate MR analysis showed a significant positive total causal effect for CCL2 and NFKB1 respectively in medulla and cerebellum. MVMR showed a direct positive causal effect for NFKB1 and TNFRSF1A, and a direct negative causal effect for CCL2 in cerebellum; while in medulla we observed a direct positive causal effect for CCL2. Since in general we observed a different magnitude for the gene specific causal effect we hypothesize that in cerebellum and medulla the effect of each gene expression is direct but also mediated by the others. These results confirm the importance of the involvement of NF-κB signaling pathway in brain tissue for the development of the disease and improve our understanding in the pathogenesis of MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...