Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 1): 150410, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571219

RESUMO

Understanding linkages between heterogeneous soil structures and non-uniform flow is fundamental for interpreting infiltration processes and improving hydrological simulations. Here, we utilized ground-penetrating radar (GPR) as a non-invasive technique to investigate those linkages and to complement current traditional methods that are labor-intensive, invasive, and non-repeatable. We combined time-lapse GPR surveys with different types of infiltration experiments to create three-dimensional (3D) diagrams of the wetting dynamics. We carried out the GPR surveys and validated them with in situ observations, independent measurements and field excavations at two experimental sites. Those sites were selected to represent different mechanisms that generate non-uniform flow: (1) preferential water infiltration initiated by tree trunk and root systems; and (2) lateral subsurface flow due to soil layering. Results revealed links between different types of soil heterogeneity and non-uniform flow. The first experimental site provided evidence of root-induced preferential flow paths along coarse roots, emphasizing the important role of coarse roots in facilitating preferential water movement through the subsurface. The second experimental site showed that water infiltrated through the restrictive layer mainly following the plant root system. The presented approach offers a non-invasive, repeatable and accurate way to detect non-uniform flow.


Assuntos
Radar , Solo , Imagem com Lapso de Tempo , Árvores , Movimentos da Água
2.
Sci Total Environ ; 726: 138511, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32320879

RESUMO

The objective of this paper was to identify the incidence and extent of preferential flow at two experimental areas located in Lyon, France. We used time-lapse ground-penetrating radar (GPR) surveys in conjunction with automatized single-ring infiltration experiments to create three-dimensional (3D) representations of infiltrated water. In total we established three 100 cm × 100 cm GPR grids and used differenced radargrams from pre- and post-infiltration surveys to detect wetting patterns. The analyzed time-lapse GPR surveys revealed the linkage between nonuniform flow and heterogeneous soil structures and plant roots. At the first experimental area, subsurface coarse gravels acted as capillary barriers that concentrated flow into narrow pathways via funneled flow. At the second experimental area, the interpolated 3D patterns closely matched direct observation of dyed patterns, thereby validating the applied protocol. They also highlighted the important role of plant roots in facilitating preferential water movement through the subsurface. The protocol presented in this study represents a valuable tool for improving the hydraulic characterization of highly heterogeneous soils, while also alleviating some of the excessive experimental efforts currently needed to detect preferential flow pathways in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...