Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 192: 112459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740315

RESUMO

Sorghum is a promising treatment for Alzheimer's disease (AD), due to its rich antioxidant and anti-inflammatory qualities. Fermentation may also affect nutritional values. Therefore, the purpose of this study was to discover the phenolic and flavonoid chemicals found in both fermented and non-fermented red sorghum, as well as their potential therapeutic uses for AD. L. fermentum, and L. reuteri, and/or L. plantarum and L. casei were used to ferment samples of sorghum. The rats were grouped into five groups, healthy animals, and rats with Alzheimer's receiving 200 mg/kg of saline, non-fermented sorghum, and fermented sorghum fermented with L. fermentum and L. reuteri, as well as L. plantarum and L. casei. Various assessments were conducted, including evaluations of behavioral responses, antioxidant responses, inflammatory responses, acetylcholine levels and acetylcholine esterase, and bacterial populations in stool. P-hydroxybenzoic acid, eriodictyo naringenin, and apigenin were significantly higher in fermented samples, while glycerols were higher in non-fermented samples. The induction of Alzheimer's led to decrease step-through latency, time in target zone, FRAP, acetylcholine levels, Bifidobacterium population and lactobacillus population, while increased escape latency, platform location latency, MDA levels, IL-6, TNF-α, acetylcholine esterase, and coliform population (P = 0.001). The administration of both non-fermented sorghum and fermented sorghum demonstrated the potential to reverse the effects of AD, with a notably higher efficacy observed in the fermented samples compared to the non-fermented ones. In conclusion, fermentation exerted significant effects on the bioactive compounds the administration of fermented sorghum resulted in improved behavioral responses, characterized by a reduction in oxidation, inflammation and microbial population.


Assuntos
Doença de Alzheimer , Antioxidantes , Fermentação , Sorghum , Doença de Alzheimer/microbiologia , Doença de Alzheimer/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Flavanonas , Microbioma Gastrointestinal , Modelos Animais de Doenças , Flavonoides , Apigenina/farmacologia , Fenóis , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Anti-Inflamatórios/farmacologia , Lactobacillus , Extratos Vegetais/farmacologia , Fezes/microbiologia , Fezes/química
2.
Food Sci Biotechnol ; 30(5): 683-690, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34123465

RESUMO

ABSTRACT: Rutin and chitosan could be utilized in the food industry owing to their antioxidant and antibacterial properties. This study was carried out to fabricate novel films using polycaprolactone (PCL-sole), PCL and chitosan (PCL-CS), PCL and rutin (PCL-R), and PCL, chitosan, and rutin (PCL-CS-R) through electros pinning method. Physical properties, in vitro antibacterial and antioxidant properties of the films, and their antibacterial activity on rainbow trout were further investigated. The PCL-CS, PCL-R, and PCL-CS-R had smaller fiber diameter and film thickness and lower viscosity while they showed higher surface tension, water contact angle, and conductivity and better antibacterial and antioxidant properties compared with PCL-sole film (P < 0.05). The PCL-CS-R film respectively decreased 17.45%, 19.27%, and 18.39% more populations of L. monocytogenes, S. aureus, and E. coli compared to PCL-sole film in the fish samples. Therefore, the PCL-CS-R film can be potentially used in active packaging because of its antioxidant and antibacterial activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...