Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1831(8): 1335-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680781

RESUMO

Bile acids play multiple roles in the physiology of vertebrates; they facilitate lipid absorption, serve as signaling molecules to control carbohydrate and lipid metabolism, and provide a disposal route for cholesterol. Unexpectedly, the α-methylacyl-CoA racemase (Amacr) deficient mice, which are unable to complete the peroxisomal cleavage of C27-precursors to the mature C24-bile acids, are physiologically asymptomatic when maintained on a standard laboratory diet. The aim of this study was to uncover the underlying adaptive mechanism with special reference to cholesterol and bile acid metabolism that allows these mice to have a normal life span. Intestinal cholesterol absorption in Amacr-/- mice is decreased resulting in a 2-fold increase in daily cholesterol excretion. Also fecal excretion of bile acids (mainly C27-sterols) is enhanced 3-fold. However, the body cholesterol pool remains unchanged, although Amacr-deficiency accelerates hepatic sterol synthesis 5-fold. Changes in lipoprotein profiles are mainly due to decreased phospholipid transfer protein activity. Thus Amacr-deficient mice provide a unique example of metabolic regulation, which allows them to have a normal lifespan in spite of the disruption of a major metabolic pathway. This metabolic adjustment can be mainly explained by setting cholesterol and bile acid metabolism to a new balanced level in the Amacr-deficient mouse.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Racemases e Epimerases/metabolismo , Animais , Ácidos e Sais Biliares/genética , Colesterol/genética , Longevidade/fisiologia , Camundongos , Camundongos Knockout , Racemases e Epimerases/genética
2.
PLoS One ; 4(4): e5090, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19352492

RESUMO

BACKGROUND: Peroxisomal metabolic machinery requires a continuous flow of organic and inorganic solutes across peroxisomal membrane. Concerning small solutes, the molecular nature of their traffic has remained an enigma. METHODS/PRINCIPAL FINDINGS: In this study, we show that disruption in mice of the Pxmp2 gene encoding Pxmp2, which belongs to a family of integral membrane proteins with unknown function, leads to partial restriction of peroxisomal membrane permeability to solutes in vitro and in vivo. Multiple-channel recording of liver peroxisomal preparations reveals that the channel-forming components with a conductance of 1.3 nS in 1.0 M KCl were lost in Pxmp2(-/-) mice. The channel-forming properties of Pxmp2 were confirmed with recombinant protein expressed in insect cells and with native Pxmp2 purified from mouse liver. The Pxmp2 channel, with an estimated diameter of 1.4 nm, shows weak cation selectivity and no voltage dependence. The long-lasting open states of the channel indicate its functional role as a protein forming a general diffusion pore in the membrane. CONCLUSIONS/SIGNIFICANCE: Pxmp2 is the first peroxisomal channel identified, and its existence leads to prediction that the mammalian peroxisomal membrane is permeable to small solutes while transfer of "bulky" metabolites, e.g., cofactors (NAD/H, NADP/H, and CoA) and ATP, requires specific transporters.


Assuntos
Membranas Intracelulares/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/fisiologia , Peroxissomos/metabolismo , Animais , Sequência de Bases , Permeabilidade da Membrana Celular , Primers do DNA , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Nucleic Acids Res ; 36(15): 5102-10, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18676977

RESUMO

DNA polymerases alpha, delta and epsilon are large multisubunit complexes that replicate the bulk of the DNA in the eukaryotic cell. In addition to the homologous catalytic subunits, these enzymes possess structurally related B subunits, characterized by a carboxyterminal calcineurin-like and an aminoproximal oligonucleotide/oligosaccharide binding-fold domain. The B subunits also share homology with the exonuclease subunit of archaeal DNA polymerases D. Here, we describe a novel domain specific to the N-terminus of the B subunit of eukaryotic DNA polymerases epsilon. The N-terminal domain of human DNA polymerases epsilon (Dpoe2NT) expressed in Escherichia coli was characterized. Circular dichroism studies demonstrated that Dpoe2NT forms a stable, predominantly alpha-helical structure. The solution structure of Dpoe2NT revealed a domain that consists of a left-handed superhelical bundle. Four helices are arranged in two hairpins and the connecting loops contain short beta-strand segments that form a short parallel sheet. DALI searches demonstrated a striking structural similarity of the Dpoe2NT with the alpha-helical subdomains of ATPase associated with various cellular activity (AAA+) proteins (the C-domain). Like C-domains, Dpoe2NT is rich in charged amino acids. The biased distribution of the charged residues is reflected by a polarization and a considerable dipole moment across the Dpoe2NT. Dpoe2NT represents the first C-domain fold not associated with an AAA+ protein.


Assuntos
DNA Polimerase II/química , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Evolução Molecular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Homologia de Sequência de Aminoácidos , Soluções
4.
BMC Struct Biol ; 8: 10, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18284662

RESUMO

BACKGROUND: The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. RESULTS: The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC) in different temperatures, and Kd was observed to be in the low muM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. CONCLUSION: Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure. The observed affinity can be physiologically relevant, given the high abundance of both binding partners in the nervous system.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Encéfalo/metabolismo , Calmodulina/genética , Cromatografia de Afinidade , Cromatografia em Gel , Dicroísmo Circular , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteína Básica da Mielina , Proteínas do Tecido Nervoso/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética
5.
Biochemistry ; 46(14): 4305-21, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17371050

RESUMO

Thiolases are CoA-dependent enzymes which catalyze the formation of a carbon-carbon bond in a Claisen condensation step and its reverse reaction via a thiolytic degradation mechanism. Mitochondrial acetoacetyl-coenzyme A (CoA) thiolase (T2) is important in the pathways for the synthesis and degradation of ketone bodies as well as for the degradation of 2-methylacetoacetyl-CoA. Human T2 deficiency has been identified in more than 60 patients. A unique property of T2 is its activation by potassium ions. High-resolution human T2 crystal structures are reported for the apo form and the CoA complex, with and without a bound potassium ion. The potassium ion is bound near the CoA binding site and the catalytic site. Binding of the potassium ion at this low-affinity binding site causes the rigidification of a CoA binding loop and an active site loop. Unexpectedly, a high-affinity binding site for a chloride ion has also been identified. The chloride ion is copurified, and its binding site is at the dimer interface, near two catalytic loops. A unique property of T2 is its ability to use 2-methyl-branched acetoacetyl-CoA as a substrate, whereas the other structurally characterized thiolases cannot utilize the 2-methylated compounds. The kinetic measurements show that T2 can degrade acetoacetyl-CoA and 2-methylacetoacetyl-CoA with similar catalytic efficiencies. For both substrates, the turnover numbers increase approximately 3-fold when the potassium ion concentration is increased from 0 to 40 mM KCl. The structural analysis of the active site of T2 indicates that the Phe325-Pro326 dipeptide near the catalytic cavity is responsible for the exclusive 2-methyl-branched substrate specificity.


Assuntos
Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Cloretos/metabolismo , Mitocôndrias/enzimologia , Potássio/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/isolamento & purificação , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Sítios de Ligação , Catálise , Cloretos/química , Sequência Conservada , Cristalografia por Raios X , Dimerização , Dipeptídeos/química , Escherichia coli/genética , Humanos , Ligação de Hidrogênio , Íons , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fenilalanina/química , Potássio/química , Prolina/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Biochem J ; 393(Pt 1): 43-50, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16091016

RESUMO

Type XIII collagen is a transmembrane collagen, which is known to exist also as a soluble variant due to ectodomain shedding. Earlier studies with the recombinant ectodomain have shown it to interact in vitro with a number of extracellular matrix proteins, e.g. Fn (fibronectin). In view of its strong binding to Fn, we examined in the present study whether the released soluble ectodomain can bind to the fibrillar Fn matrix under cell-culture conditions and, if so, influence its assembly. In this study, we demonstrate that the type XIII collagen ectodomain of mammalian cells can associate with Fn fibres and may eventually hamper incorporation of the fibrillar Fn meshwork. The association between type XIII collagen and Fn was implicated to be mediated by the C-terminal end of type XIII collagen and the N-terminal end of Fn. The results presented here imply that the shedding of the type XIII collagen ectodomain results in a biologically active molecule capable of remodelling the structure of the pericellular matrix.


Assuntos
Colágeno Tipo XIII/química , Colágeno Tipo XIII/metabolismo , Fibronectinas/biossíntese , Fibronectinas/metabolismo , Animais , Bovinos , Células Cultivadas , Colágeno Tipo XIII/genética , Cricetinae , Matriz Extracelular/metabolismo , Fibronectinas/química , Deleção de Genes , Humanos , Pró-Colágeno/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Regulação para Cima
7.
Biochim Biophys Acta ; 1712(1): 62-70, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15893292

RESUMO

A chip-based biosensor technology using surface plasmon resonance (SPR) was developed for studying the interaction of ligands and G protein-coupled receptors (GPCRs). GPCRs, the fourth largest superfamily in the human genome, are the largest class of targets for drug discovery. We have expressed the three subtypes of alpha(2)-adrenergic receptor (alpha(2)-AR), a prototypical GPCR as functional fusion proteins in baculovirus-infected insect cells. The localization of the expressed receptor was observed in intracellular organelles, as detected by eGFP fluorescence. In addition, the deletion mutants of alpha(2B)-AR, with a deletion in the 3rd intracellular loop, exhibited unaltered K(d) values and enhanced stability, thus making them more promising candidates for crystallization. SPR demonstrated that small molecule ligands can bind the detergent-solubilized receptor, thus proving that alpha(2)-AR is active even in a lipid-free environment. The K(d) values obtained from the biosensor analysis and traditional ligand binding studies correlate well with each other. This is the first demonstration of the binding of a small molecule to the detergent-solubilized state of alpha(2)-ARs and interaction of low-molecular mass-ligands in real time in a label-free environment. This technology will also allow the development of high throughput platform for screening a large number of compounds for generation of leads.


Assuntos
Membrana Celular/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Animais , Anticorpos Monoclonais/química , Baculoviridae/metabolismo , Sequência de Bases , Técnicas Biossensoriais , Western Blotting , Linhagem Celular , Primers do DNA/química , Detergentes/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Insetos , Cinética , Ligantes , Lipídeos/química , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes/química , Spodoptera , Ressonância de Plasmônio de Superfície , Fatores de Tempo
8.
Proteins ; 58(2): 295-308, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15578709

RESUMO

The phosphotyrosyl protein phosphatase activity of prostatic acid phosphatase (PAP) has been well established. It has also been suggested that PAP partly regulates the activity of growth factor receptors by dephosphorylating the autophosphorylysable tyrosines in them. We studied the binding of the peptides from epidermal growth factor receptor (EGFR) and its homolog (ErbB-2), corresponding to their autophosphorylation sites, to PAP using theoretical modeling and molecular dynamics (MD) simulation methods. Nine different peptides, each with a phosphotyrosine residue, were docked on human PAP. The binding energies of these peptide-PAP complexes were calculated theoretically and compared to experimentally obtained affinities. The peptide Ace--DNLpYYWD--NH2 from ErbB-2(1197-1203) showed the most favorable free energy of binding when estimated theoretically. The results demonstrate that the presence of another tyrosine residue proximate to C-terminal of autophosphorylysable Tyr enhances the binding affinity considerably. The presence of a bulky group instead prevents the binding, as is observed in case of peptide Ace--NLYpYWDQ--NH2 which failed to bind, both in theoretical calculations and experiments. Thus we demonstarted that PAP could potentially bind to EGFR and Erbb-2 and dephosphorylate them. Thus it could be involved in the regulation of the function of such receptors. In addition, complexes of a peptide from AngiotensinII and phosphotyrosine(pY) with human PAP were also modeled. The effects of different protonation states of the titratable active site residues on ligand (pY) binding have also been investigated. For a favorable binding His12 and Asp258 should be neutral, His257 should be positively charged and the phosphate group of the ligand should be in PO(4) (3-) state. Furthermore, the analysis of protein motion as observed during simulations suggests the loop-loop contact in the PAP dimer to be of importance in cooperativity.


Assuntos
Proteínas Tirosina Fosfatases/química , Proteômica/métodos , Fosfatase Ácida , Animais , Ácido Aspártico/química , Sítios de Ligação , Simulação por Computador , Dimerização , Receptores ErbB/química , Receptores ErbB/metabolismo , Histidina/química , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ligantes , Modelos Químicos , Modelos Moleculares , Peptídeos/química , Fosforilação , Fosfotirosina/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Ratos , Receptor ErbB-2/química , Eletricidade Estática , Termodinâmica , Tirosina/química
9.
J Biol Chem ; 278(37): 34966-74, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12824157

RESUMO

The collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of proline residues in -Xaa-Pro-Gly-sequences. The vertebrate enzymes are alpha 2 beta 2 tetramers in which protein-disulfide isomerase serves as the beta subunit. Two isoforms of the catalytic alpha subunit have been identified and shown to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, the type I and type II C-P4Hs, respectively. The peptide-substrate-binding domain of type I C-P4H has been shown to be located between residues 138 and 244 in the 517-residue alpha(I) subunit and to be distinct from the catalytic domain that is located in the C-terminal region. We report here that a recombinant human C-P4H alpha(I) polypeptide Phe144-Ser244 forms a folded domain consisting of five alpha helices and one short beta strand. This structure is quite different from those of other proline-rich peptide-binding modules, which consist mainly of beta strands. Binding of the peptide (Pro-Pro-Gly)2 to this domain caused major chemical shifts in many backbone amide resonances, the residues showing the largest shifts being mainly hydrophobic, including three tyrosines. The Kd values determined by surface plasmon resonance and isothermal titration calorimetry for the binding of several synthetic peptides to the alpha(I) and the corresponding alpha(II) domain were very similar to the Km and Ki values for these peptides as substrates and inhibitors of the type I and type II C-P4H tetramers. The Kd values of the alpha(I) and alpha(II) domains for (Gly-Pro-4Hyp)5 were much higher than those for (Pro-Pro-Gly)5, indicating a marked decrease in the affinity of hydroxylated peptides for the domain. Many characteristic features of the binding of peptides to the type I and type II C-P4H tetramers can thus be explained by the properties of binding to this domain rather than the catalytic domain.


Assuntos
Colágeno/metabolismo , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/química , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolina , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Humanos , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
J Biol Chem ; 278(22): 20154-61, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12654921

RESUMO

A data base search with YBR026c/MRF1', which encodes trans-2-enoyl thioester reductase of the intramitochondrial fatty acid synthesis (FAS) type II in yeast (Torkko, J. M., Koivuranta, K. T., Miinalainen, I. J., Yagi, A. I., Schmitz, W., Kastaniotis, A. J., Airenne, T. T., Gurvitz, A., and Hiltunen, K. J. (2001) Mol. Cell. Biol. 21, 6243-6253), revealed the clone AA393871 (HsNrbf-1, nuclear receptor binding factor 1) in human EST data bank. Expression of HsNrbf-1, tagged C-terminally with green fluorescent protein, in HeLa cells, resulted in a punctated fluorescence signal, superimposable with the MitoTracker Red dye. Wild-type polypeptide was immunoisolated from the extract of bovine heart mitochondria. Recombinant HsNrbf-1p reduces trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. Furthermore, expression of HsNRBF-1 in the ybr026cDelta yeast strain restored mitochondrial respiratory function allowing growth on glycerol. These findings provide evidence that Nrbf-1ps act as a mitochondrial 2-enoyl thioester reductase, and mammalian cells may possess bacterial type fatty acid synthetase (FAS type II) in mitochondria, in addition to FAS type I in the cytoplasm.


Assuntos
Ácidos Graxos Dessaturases/química , NADH NADPH Oxirredutases , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Primers do DNA , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/isolamento & purificação , Ácidos Graxos Dessaturases/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Mitocôndrias Cardíacas/enzimologia , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Homologia de Sequência de Aminoácidos
11.
Biochem J ; 367(Pt 2): 433-41, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12106015

RESUMO

Rat peroxisomal multifunctional enzyme type 1 (perMFE-1) is a monomeric protein of beta-oxidation. We have defined five functional domains (A, B, C, D and E) in the perMFE-1 based on comparison of the amino acid sequence with homologous proteins from databases and structural data of the hydratase-1/isomerases (H1/I) and (3 S )-hydroxyacyl-CoA dehydrogenases (HAD). Domain A (residues 1-190) comprises the H1/I fold and catalyses both 2-enoyl-CoA hydratase-1 and Delta(3)-Delta(2)-enoyl-CoA isomerase reactions. Domain B (residues 191-280) links domain A to the (3 S )-dehydrogenase region, which includes both domain C (residues 281-474) and domain D (residues 480-583). Domains C and D carry features of the dinucleotide-binding and the dimerization domains of monofunctional HADs respectively. Domain E (residues 584-722) has sequence similarity to domain D of the perMFE-1, which suggests that it has evolved via partial gene duplication. Experiments with engineered perMFE-1 variants demonstrate that the H1/I competence of domain A requires stabilizing interactions with domains D and E. The variant His-perMFE (residues 288-479)Delta, in which the domain C is deleted, is stable and has hydratase-1 activity. It is proposed that the extreme C-terminal domain E in perMFE-1 serves the following three functions: (i) participation in the folding of the N-terminus into a functionally competent H1/I fold, (ii) stabilization of the dehydrogenation domains by interaction with the domain D and (iii) the targeting of the perMFE-1 to peroxisomes via its C-terminal tripeptide.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/química , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/metabolismo , Isomerases/química , Isomerases/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/genética , Sequência de Aminoácidos , Animais , Enoil-CoA Hidratase/genética , Escherichia coli/genética , Isomerases/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Enzima Bifuncional do Peroxissomo , Dobramento de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
12.
J Biol Chem ; 277(25): 23092-9, 2002 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-11956183

RESUMO

Type XIII collagen consists of a short N-terminal intracellular domain, a transmembrane domain, and a collagenous ectodomain, and it is found at many sites of cell adhesion. We report on the characterization of recombinant type XIII collagen. The shed ectodomain was purified from insect cell culture medium and shown to form 240-kDa trimers with a T(m) of 42 degrees C. Correct chain association into a triple-helical conformation was confirmed by limited pepsin digestion and CD spectroscopy. Rotary shadowing electron microscopy of the ectodomain revealed it to be a 150-nm rod with two flexible hinges separating 31-, 52-, and 68-nm portions. The rods represent the collagenous domains 1-3, and the hinges coincide with the non-collagenous domains 2 and 3. By using surface plasmon resonance analysis, the ectodomain showed interaction with immobilized fibronectin, nidogen-2, and perlecan with K(D) values in the nanomolar range. The binding sites of type XIII collagen for fibronectin were localized to the collagenous domains, whereas the binding activities for nidogen-2 and perlecan resided in the pepsin-sensitive portions of the ectodomain. Furthermore, the ectodomain bound significantly to heparin, which also inhibited shedding of the ectodomain in insect cell cultures. The results reveal that type XIII collagen is notably distinct in its structure compared with other cell-surface proteins, and the in vitro binding with fibronectin, heparin, and two basement membrane components is indicative of multiple cell-matrix interactions in which this ubiquitously expressed protein participates.


Assuntos
Proteínas de Transporte/química , Colágeno Tipo XIII/química , Fibronectinas/química , Proteoglicanas de Heparan Sulfato/química , Heparina/química , Glicoproteínas de Membrana/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Dicroísmo Circular , Colágeno/química , Dimerização , Relação Dose-Resposta a Droga , Glicoproteínas/metabolismo , Humanos , Cinética , Microscopia Eletrônica , Modelos Biológicos , Dados de Sequência Molecular , Pepsina A/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...