Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062781

RESUMO

Due to their inhibition of acetylcholinesterase, organophosphates are among the most toxic of chemicals. Pralidoxime (a.k.a 2-PAM) is the only acetylcholinesterase reactivator approved in the U.S., but 2-PAM only poorly traverses the blood-brain barrier. Previously, we have demonstrated that scL-2PAM, a nanoformulation designed to enter the brain via receptor-mediated transcytosis, is superior to unencapsulated 2-PAM for reactivating brain acetylcholinesterase, ameliorating cholinergic crisis, and improving survival rates for paraoxon-exposed mice. Here, we employ histology and transcriptome analyses to assess the ability of scL-2PAM to prevent neurological sequelae including microglial activation, expression of inflammatory cytokines, and ultimately loss of neurons in mice surviving paraoxon exposures. Levels of the mRNA encoding chemokine ligand 2 (CCL2) were significantly upregulated after paraoxon exposures, with CCL2 mRNA levels in the brain correlating well with the intensity and duration of cholinergic symptoms. Our nanoformulation of 2-PAM was found to be superior to unencapsulated 2-PAM in reducing the levels of the CCL2 transcript. Moreover, brain histology revealed that scL-2PAM was more effective than unencapsulated 2-PAM in preventing microglial activation and the subsequent loss of neurons. Thus, scL-2PAM appears to be a new and improved countermeasure for reducing neuroinflammation and mitigating brain damage in survivors of organophosphate exposures.


Assuntos
Inibidores da Colinesterase , Doenças Neuroinflamatórias , Neurônios , Paraoxon , Animais , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Inibidores da Colinesterase/farmacologia , Paraoxon/toxicidade , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , Organofosfatos/farmacologia , Acetilcolinesterase/metabolismo , Camundongos Endogâmicos C57BL
2.
Int J Nanomedicine ; 19: 307-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229703

RESUMO

Introduction: Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods: We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion: In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion: Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.


Assuntos
Inibidores da Colinesterase , Reativadores da Colinesterase , Paraoxon , Compostos de Pralidoxima , Animais , Camundongos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Organofosfatos , Oximas/farmacologia , Oximas/química , Paraoxon/toxicidade , Paraoxon/química , Compostos de Pralidoxima/química , Compostos de Pralidoxima/farmacologia
3.
Cancers (Basel) ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291878

RESUMO

Because lung cancer remains the most common and lethal of cancers, novel therapeutic approaches are urgently needed. RB94 is a truncated form of retinoblastoma tumor suppressor protein with elevated anti-tumor efficacy. Our investigational nanomedicine (termed scL-RB94) is a tumor-targeted liposomal formulation of a plasmid containing the gene encoding RB94. In this research, we studied anti-tumor and immune modulation activities of scL-RB94 nanocomplex in preclinical models of human non-small cell lung cancer (NSCLC). Systemic treatment with scL-RB94 of mice bearing human NSCLC tumors significantly inhibited tumor growth by lowering proliferation and increasing apoptosis of tumor cells in vivo. scL-RB94 treatment also boosted anti-tumor immune responses by upregulating immune recognition molecules and recruiting innate immune cells such as natural killer (NK) cells. Antibody-mediated depletion of NK cells blunted the anti-tumor activity of scL-RB94, suggesting that NK cells were crucial for the observed anti-tumor activity in these xenograft models. Treatment with scL-RB94 also altered the polarization of tumor-associated macrophages by reducing immune-suppressive M2 macrophages to lower immune suppression in the tumor microenvironment. Collectively, our data suggest that the efficacy of scL-RB94 against NSCLC is due to an induction of tumor cell death as well as enhancement of innate anti-tumor immunity.

4.
Viruses ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35458469

RESUMO

SGT-53 is a novel investigational agent that comprises an immunoliposome carrying a plasmid vector driving expression of the human TP53 gene that encodes wild-type human p53. SGT-53 is currently in phase II human trials for advanced pancreatic cancer. Although p53 is best known as a tumor suppressor, its participation in both innate and adaptive immune responses is well documented. It is now clear that p53 is an important component of the host response to various viral infections. To facilitate their viral life cycles, viruses have developed a diverse repertoire of strategies for counteracting the antiviral activities of host immune system by manipulating p53-dependent pathways in host cells. Coronaviruses reduce endogenous p53 levels in the cells they infect by enhancing the degradation of p53 in proteasomes. Thus, interference with p53 function is an important component in viral pathogenesis. Transfection of cells by SGT-53 has been shown to transiently produce exogenous p53 that is active as a pleiotropic transcription factor. We herein summarize the rationale for repurposing SGT-53 as a therapy for infection by SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic. Because p53 regulation was found to play a crucial role in different infection stages of a wide variety of viruses, it is rational to believe that restoring p53 function based on SGT-53 treatment may lead to beneficial therapeutic outcomes for infectious disease at large including heretofore unknown viral pathogens that may emerge in the future.


Assuntos
COVID-19 , Vírus , COVID-19/terapia , Genes p53 , Terapia Genética , Humanos , Imunidade Inata , Pandemias , SARS-CoV-2/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Vírus/metabolismo
5.
Cancer ; 125(14): 2409-2422, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31012964

RESUMO

BACKGROUND: Over 96% of high-grade ovarian carcinomas and 50% of all cancers are characterized by alterations in the p53 gene. Therapeutic strategies to restore and/or reactivate the p53 pathway have been challenging. By contrast, p63, which shares many of the downstream targets and functions of p53, is rarely mutated in cancer. METHODS: A novel strategy is presented for circumventing alterations in p53 by inducing the tumor-suppressor isoform TAp63 (transactivation domain of tumor protein p63) through its direct downstream target, microRNA-130b (miR-130b), which is epigenetically silenced and/or downregulated in chemoresistant ovarian cancer. RESULTS: Treatment with miR-130b resulted in: 1) decreased migration/invasion in HEYA8 cells (p53 wild-type) and disruption of multicellular spheroids in OVCAR8 cells (p53-mutant) in vitro, 2) sensitization of HEYA8 and OVCAR8 cells to cisplatin (CDDP) in vitro and in vivo, and 3) transcriptional activation of TAp63 and the B-cell lymphoma (Bcl)-inhibitor B-cell lymphoma 2-like protein 11 (BIM). Overexpression of TAp63 was sufficient to decrease cell viability, suggesting that it is a critical downstream effector of miR-130b. In vivo, combined miR-130b plus CDDP exhibited greater therapeutic efficacy than miR-130b or CDDP alone. Mice that carried OVCAR8 xenograft tumors and were injected with miR-130b in 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) liposomes had a significant decrease in tumor burden at rates similar to those observed in CDDP-treated mice, and 20% of DOPC-miR-130b plus CDDP-treated mice were living tumor free. Systemic injections of scL-miR-130b plus CDDP in a clinically tested, tumor-targeted nanocomplex (scL) improved survival in 60% and complete remissions in 40% of mice that carried HEYA8 xenografts. CONCLUSIONS: The miR-130b/TAp63 axis is proposed as a new druggable pathway that has the potential to uncover broad-spectrum therapeutic options for the majority of p53-altered cancers.


Assuntos
MicroRNAs/uso terapêutico , Mutação de Sentido Incorreto , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Nus , MicroRNAs/administração & dosagem , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/prevenção & controle , Isoformas de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 25(9): 2860-2873, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30723145

RESUMO

PURPOSE: To identify deregulated and inhibitory miRNAs and generate novel mimics for replacement nanomedicine for head and neck squamous cell carcinomas (HNSCC). EXPERIMENTAL DESIGN: We integrated miRNA and mRNA expression, copy number variation, and DNA methylation results from The Cancer Genome Atlas (TCGA), with a functional genome-wide screen. RESULTS: We reveal that the miR-30 family is commonly repressed, and all 5 members sharing these seed sequence similarly inhibit HNSCC proliferation in vitro. We uncover a previously unrecognized inverse relationship with overexpression of a network of important predicted target mRNAs deregulated in HNSCC, that includes key molecules involved in proliferation (EGFR, MET, IGF1R, IRS1, E2F7), differentiation (WNT7B, FZD2), adhesion, and invasion (ITGA6, SERPINE1). Reexpression of the most differentially repressed family member, miR-30a-5p, suppressed this mRNA program, selected signaling proteins and pathways, and inhibited cell proliferation, migration, and invasion in vitro. Furthermore, a novel miR-30a-5p mimic formulated into a targeted nanomedicine significantly inhibited HNSCC xenograft tumor growth and target growth receptors EGFR and MET in vivo. Significantly decreased miR-30a/e family expression was related to DNA promoter hypermethylation and/or copy loss in TCGA data, and clinically with decreased disease-specific survival in a validation dataset. Strikingly, decreased miR-30e-5p distinguished oropharyngeal HNSCC with poor prognosis in TCGA (P = 0.002) and validation (P = 0.007) datasets, identifying a novel candidate biomarker and target for this HNSCC subset. CONCLUSIONS: We identify the miR-30 family as an important regulator of signal networks and tumor suppressor in a subset of HNSCC patients, which may benefit from miRNA replacement nanomedicine therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/administração & dosagem , MicroRNAs/genética , Nanopartículas/administração & dosagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Animais , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Variações do Número de Cópias de DNA , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanomedicina , Nanopartículas/química , Prognóstico , Estudos Prospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nucleic Acids Res ; 46(3): 1424-1440, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202181

RESUMO

Intrinsic therapeutic resistance especially in cancer stem cells (CSCs) together with extensive tumor cell infiltration and restricted permeation of the blood-brain barrier (BBB) by drugs may all contribute to the treatment failure in patients with glioblastoma multiforme (GBM). Accumulating evidence suggests that long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a role in tumor cell infiltration and therapeutic resistance of GBM. Using our tumor-targeted nanocomplex, we have modulated the expression of MALAT1 and investigated its impact on GBM cells. Importantly, our nanocomplex is able to target CSCs that are considered to be the prime culprits in therapeutic resistance and recurrence of GBM. Attenuation of MALAT1 by RNA interference significantly lowered the growth, motility and stemness of GBM cells. In addition, silencing of MALAT1 clearly improved the sensitivity of GBM cells to chemotherapeutic agents including the current first-line therapy of GBM [temozolomide (TMZ)]. In animal models of GBM, tumor involution with a modest but statistically significant survival benefit was achieved with concurrent treatment of TMZ and nanocomplex-mediated silencing of MALAT1. These results suggest that combining standard TMZ treatment with lncRNA-targeting therapies using our nanocomplex could substantially enhance the very poor prognosis for GBM patients.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , RNA Longo não Codificante/genética , Temozolomida/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Lipossomos/síntese química , Lipossomos/farmacocinética , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Ther ; 26(1): 84-94, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29103910

RESUMO

The failure of therapeutic agents to cross the blood-brain barrier (BBB) has been a major impediment in the treatment of neurological disorders and brain tumors. We have addressed this issue using an immunoliposome nanocomplex (designated scL) that delivers therapeutic nucleic acids across the BBB into the deep brain via transcytosis mediated by transferrin receptors. We validated brain delivery of payloads after systemic administration by monitoring uptake of fluorescently labeled payloads and by confirming up- or down-modulation of specific target gene expression in the brain, mainly in neuronal cells. As proof of concept for the therapeutic potential of our delivery system, we employed scL delivering an siRNA targeting tumor necrosis factor alpha to suppress neuroinflammation and neuronal apoptosis and to protect mice in lethal endotoxemia triggered by bacterial lipopolysaccharide. Brain delivery of therapeutic payloads via scL has major implications for the development of treatments for neurological disorders and brain tumors.


Assuntos
Apoptose/genética , Encéfalo/metabolismo , Encefalite/genética , Técnicas de Transferência de Genes , RNA Interferente Pequeno/genética , Nanomedicina Teranóstica , Animais , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Encefalite/metabolismo , Encefalite/patologia , Encefalite/terapia , Feminino , Genes Reporter , Humanos , Camundongos , Camundongos Transgênicos , RNA Interferente Pequeno/administração & dosagem , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator de Necrose Tumoral alfa/genética
9.
Mol Ther ; 24(8): 1484-91, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27480598

RESUMO

Gene therapy development has been limited by our inability to target multifocal cancer with systemic delivery. We developed a systemically administered, tumor-targeted liposomal nanodelivery complex (SGT-94) carrying a plasmid encoding RB94, a truncated form of the RB gene. In preclinical studies, RB94 showed marked cytotoxicity against tumor but not normal cells. SGT-94 was administered intravenously in a first-in-man study in metastatic genitourinary cancer. Minimal side effects were observed; dose-limiting toxicity (DLT) has not been reached in 11 evaluable patients. There was evidence of clinical activity at the 2.4 mg dose with one complete remission (CR) and one partial remission (PR). The patient in CR was retreated upon progression and had a second PR. Furthermore, there was tumor-specific targeting of the SGT-94 complex. One patient had wedge resections of two lung metastases which demonstrated RB94 expression at the DNA level by polymerase chain reaction (PCR) and at the protein level by Western blotting, with no RB94 present in normal contiguous lung. In conclusion, systemically delivered SGT-94 showed evidence of selective tumor targeting and was well tolerated with evidence of clinical activity. Additional studies are warranted to explore the activity of this drug as a single agent and in combination therapy.


Assuntos
Lipossomos , Nanomedicina , Plasmídeos/administração & dosagem , Plasmídeos/genética , Neoplasias Urogenitais/genética , Neoplasias Urogenitais/terapia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Feminino , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Nanomedicina/métodos , Metástase Neoplásica , Estadiamento de Neoplasias , Plasmídeos/efeitos adversos , Receptores da Transferrina/imunologia , Proteína do Retinoblastoma/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Tomografia Computadorizada por Raios X , Transgenes , Resultado do Tratamento , Neoplasias Urogenitais/diagnóstico , Neoplasias Urogenitais/mortalidade
10.
Mol Ther ; 24(9): 1697-706, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27357628

RESUMO

Loss of p53 suppressor function, through mutations or inactivation of the p53 pathway, occurs in most human cancers. SGT-53 is a liposomal nanocomplex designed for systemic, tumor-targeting delivery of the wt p53 gene. In this nanodelivery system, an anti-transferrin receptor single-chain antibody fragment serves as the targeting moiety. In an initial phase 1 trial in patients with advanced solid tumors, SGT-53 demonstrated tumor-specific targeting, was shown to be well tolerated, and was associated with an antitumor effect in several patients. Our preclinical studies have also demonstrated enhanced antitumor activity with the combination of SGT-53 and docetaxel. Thus, this dose-escalation trial was undertaken to assess the combination of SGT-53 and docetaxel for safety and potential efficacy in 14 advanced cancer patients. Results reveal that the combination of SGT-53 (maximum dose, 3.6 mg DNA/infusion) and docetaxel (75 mg/m(2)/infusion) was well tolerated. Moreover, clinical activity involving 12 evaluable patients was observed. Three of these patients achieved RECIST-verified partial responses with tumor reductions of -47%, -51%, and -79%. Two others had stable disease with significant shrinkage (-25% and -16%). These results support phase 2 testing of SGT-53 in combination with docetaxel.


Assuntos
Genes p53 , Lipossomos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Taxoides/administração & dosagem , Adulto , Idoso , Estudos de Coortes , Terapia Combinada , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Retratamento , Tomografia Computadorizada por Raios X , Resultado do Tratamento
11.
Cancer Lett ; 369(1): 250-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26325605

RESUMO

Although temozolomide (TMZ) is the current first-line chemotherapy for glioblastoma multiforme (GBM), most patients either do not respond or ultimately fail TMZ treatment. Both intrinsic tumor resistance and limited access of TMZ to brain tumors as a result of the blood-brain barrier (BBB) contribute to poor response and ultimately to poor prognosis for GBM patients. We have developed a "dual-targeting" nanomedicine that both actively crosses the BBB and actively targets cancer cells once in the brain parenchyma. This nanomedicine (termed scL-TMZ) is sized ~40 nm and comprised of a cationic liposome (DOTAP:DOPE) encapsulating TMZ. The surface of liposome is decorated with anti-transferrin receptor single-chain antibody fragments to facilitate the crossing of the BBB by the scL-TMZ in addition to targeting GBM in the brain. This novel formulation was found to be markedly more effective than standard TMZ in both TMZ-resistant and TMZ-sensitive GBM. Encapsulation of TMZ also markedly enhanced its efficacy in killing a variety of non-GBM tumor cells. The scL-TMZ nanocomplex was shown to target cancer stem cells, which have been linked to both drug resistance and recurrence in GBM. Most significantly, systemically administered scL-TMZ significantly prolonged survival in mice bearing intracranial GBM tumors. The improved efficacy of scL-TMZ compared to standard TMZ was accompanied by reduced toxicity, so we conclude that the scL-TMZ nanomedicine holds great promise as a more effective therapy for GBM and other tumor types.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Nanocápsulas/administração & dosagem , Animais , Antineoplásicos/toxicidade , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Dacarbazina/administração & dosagem , Dacarbazina/toxicidade , Feminino , Glioblastoma/patologia , Humanos , Camundongos Nus , Nanocápsulas/toxicidade , Temozolomida , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochem Biophys Res Commun ; 468(3): 485-9, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26116770

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review.


Assuntos
Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/química , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Nanocápsulas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antineoplásicos/química , Neoplasias Encefálicas/química , Neoplasias Encefálicas/patologia , Difusão , Glioblastoma/química , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia
13.
Curr Protoc Cell Biol ; 67: 23.10.1-23.10.10, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26061242

RESUMO

In many human cancers including malignant glioblastoma multiforme (GBM), cancer stem cells (CSCs) are thought to be responsible for tumor initiation, metastasis and resistance to conventional anti-cancer therapies. Therefore, a CSC-targeted drug delivery strategy to eliminate CSCs is a desirable approach for developing a more effective therapeutic. Moreover, isolated CSCs will provide an invaluable tool for studying the underlying cellular mechanisms of tumor development and provide insight into therapeutic options for successful eradication of CSCs. This unit describes a method for the isolation and culture of CSCs from human GBM tumor tissue.


Assuntos
Separação Celular/métodos , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Citometria de Fluxo , Imunofluorescência , Humanos , Esferoides Celulares/patologia , Células Tumorais Cultivadas
14.
Nanomedicine ; 11(2): 301-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25240597

RESUMO

Development of temozolomide (TMZ) resistance contributes to the poor prognosis for glioblastoma multiforme (GBM) patients. It was previously demonstrated that delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex (SGT-53) which crosses the blood-brain barrier could sensitize highly TMZ-resistant GBM tumors to TMZ. Here we assessed whether SGT-53 could inhibit development of TMZ resistance. SGT-53 significantly chemosensitized TMZ-sensitive human GBM cell lines (U87 and U251), in vitro and in vivo. Furthermore, in an intracranial GBM tumor model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ inhibited tumor growth, increased apoptosis and most importantly, significantly prolonged median survival. In contrast TMZ alone had no significant effect on median survival compared to a single cycle of TMZ. These results suggest that combining SGT-53 with TMZ appears to limit development of TMZ resistance, prolonging its anti-tumor effect and could be a more effective therapy for GBM. FROM THE CLINICAL EDITOR: Using human glioblastoma multiforma cell lines, this research team demonstrated that the delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex limited the development of temozolomide resistance and prolonged its anti-tumor effect, which may enable future human application of this or similar techniques.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Proteína Supressora de Tumor p53/uso terapêutico , Animais , Apoptose , Barreira Hematoencefálica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Glioblastoma/patologia , Humanos , Camundongos , Nanopartículas/uso terapêutico , Temozolomida , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
ACS Nano ; 8(6): 5494-514, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24811110

RESUMO

Temozolomide (TMZ)-resistance in glioblastoma multiforme (GBM) has been linked to upregulation of O(6)-methylguanine-DNA methyltransferase (MGMT). Wild-type (wt) p53 was previously shown to down-modulate MGMT. However, p53 therapy for GBM is limited by lack of efficient delivery across the blood brain barrier (BBB). We have developed a systemic nanodelivery platform (scL) for tumor-specific targeting (primary and metastatic), which is currently in multiple clinical trials. This self-assembling nanocomplex is formed by simple mixing of the components in a defined order and a specific ratio. Here, we demonstrate that scL crosses the BBB and efficiently targets GBM, as well as cancer stem cells (CSCs), which have been implicated in recurrence and treatment resistance in many human cancers. Moreover, systemic delivery of scL-p53 down-modulates MGMT and induces apoptosis in intracranial GBM xenografts. The combination of scL-p53 and TMZ increased the antitumor efficacy of TMZ with enhanced survival benefit in a mouse model of highly TMZ-resistant GBM. scL-p53 also sensitized both CSCs and bulk tumor cells to TMZ, increasing apoptosis. These results suggest that combining scL-p53 with standard TMZ treatment could be a more effective therapy for GBM.


Assuntos
Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Nanopartículas/química , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Terapia Genética/métodos , Glioblastoma/genética , Humanos , Camundongos , Microscopia de Força Atômica , Nanomedicina , Recidiva Local de Neoplasia , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Temozolomida , Resultado do Tratamento
16.
Mol Ther ; 22(2): 278-291, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24113515

RESUMO

Cancer stem-like cells (CSCs) have been implicated in recurrence and treatment resistance in many human cancers. Thus, a CSC-targeted drug delivery strategy to eliminate CSCs is a desirable approach for developing a more effective anticancer therapy. We have developed a tumor-targeting nanodelivery platform (scL) for systemic administration of molecular medicines. Following treatment with the scL nanocomplex carrying various payloads, we have observed exquisite tumor-targeting specificity and significant antitumor response with long-term survival benefit in numerous animal models. We hypothesized that this observed efficacy might be attributed, at least in part, to elimination of CSCs. Here, we demonstrate the ability of scL to target both CSCs and differentiated nonstem cancer cells (non-CSCs) in various mouse models including subcutaneous and intracranial xenografts, syngeneic, and chemically induced tumors. We also show that systemic administration of scL carrying the wtp53 gene was able to induce tumor growth inhibition and the death of both CSCs and non-CSCs in subcutaneous colorectal cancer xenografts suggesting that this could be an effective method to reduce cancer recurrence and treatment resistance. This scL nanocomplex is being evaluated in a number of clinical trials where it has been shown to be well tolerated with indications of anticancer activity.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Células-Tronco Neoplásicas/metabolismo , Animais , Apoptose/genética , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Imunofenotipagem , Lipossomos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Especificidade de Órgãos/genética , Receptores da Transferrina/genética , Transgenes , Carga Tumoral/genética , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Ther ; 21(5): 1096-103, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23609015

RESUMO

Selective delivery of therapeutic molecules to primary and metastatic tumors is optimal for effective cancer therapy. A liposomal nanodelivery complex (scL) for systemic, tumor-targeting delivery of anticancer therapeutics has been developed. scL employs an anti-transferrin receptor (TfR), scFv as the targeting molecule. Loss of p53 suppressor function, through mutations or inactivation of the p53 pathway, is present in most human cancers. Rather than being transiently permissive for tumor initiation, persistence of p53 dysfunction is a continuing requirement for maintaining tumor growth. Herein, we report results of a first-in-man Phase I clinical trial of restoration of the normal human tumor suppressor gene p53 using the scL nanocomplex (SGT-53). Minimal side effects were observed in this trial in patients with advanced solid tumors. Furthermore, the majority of patients demonstrated stable disease. One patient with adenoid cystic carcinoma had his status changed from unresectable to resectable after one treatment cycle. More significantly, we observed an accumulation of the transgene in metastatic tumors, but not in normal skin tissue, in a dose-related manner. These results show not only that systemically delivered SGT-53 is well tolerated and exhibits anticancer activity, but also supply evidence of targeted tumor delivery of SGT-53 to metastatic lesions.


Assuntos
DNA Complementar , Genes p53 , Nanopartículas , Neoplasias/genética , Neoplasias/terapia , Adulto , Idoso , DNA Complementar/química , Feminino , Expressão Gênica , Humanos , Lipossomos , Masculino , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Nanopartículas/química , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/patologia , Resultado do Tratamento
18.
Acad Radiol ; 16(5): 627-37, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19345904

RESUMO

RATIONALE AND OBJECTIVES: Early detection of lung cancer can be problematic. Although current imaging methods can identify lung cancers, they are limited in the size of detectable nodules. There is also lack of evidence that these methods can correctly classify nodules <7 mm as malignant because lung cancer can be mimicked in appearance by benign lesions that lower specificity. Therefore, there is a need for enhanced sensitivity/specificity of detection for small lung cancers. MATERIALS AND METHODS: We have developed a nanosized ( approximately 100 nm) immunoliposome complex for delivery of molecular medicines to tumors. In this complex, an anti-transferrin receptor single-chain antibody fragment (TfRscFv) decorates the surface of a cationic liposome encapsulating the payload. We have previously shown that this systemically administered complex (scL) selectively targets, and efficiently delivers its payload into, tumor cells. We have also encapsulated the magnetic resonance imaging (MRI) contrast agent gadopentetate dimeglumine ("gad-d") within this complex, resulting in increased resolution and image intensity in a mouse model of primary cancer. Here we examine the ability of the scL-gad-d complex to increase the sensitivity of detection of lung metastases. RESULTS: These MRI studies show that the scL-gad-d nanocomplex is able to improve detection, and increase enhancement of, small lung cancers (400 microm and as small as 100 microm) compared to that of uncomplexed gad-d. CONCLUSIONS: Because of its tumor targeting specificity, deliver of an MRI contrast agent via this nanocomplex has potential for use as an agent that can identify small lung cancers, thus improving early detection and possibly increasing survival.


Assuntos
Portadores de Fármacos/administração & dosagem , Gadolínio DTPA , Aumento da Imagem/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/secundário , Imageamento por Ressonância Magnética/métodos , Nanomedicina/métodos , Animais , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/química , Camundongos , Camundongos Endogâmicos C57BL , Sensibilidade e Especificidade
19.
Trends Biotechnol ; 26(10): 552-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18722682

RESUMO

Inclusion of a tumor-targeting molecule in nanosized delivery systems increases their in vivo efficacy. However, the biodistribution and pharmacokinetics of the uptake of such particles have not yet been well addressed. Several recent papers have suggested that tumor-targeting ligands function primarily to increase intracellular uptake of the nanocomplex and do not influence tumor localization. However, other reports indicate that they do play a role in the accumulation in the tumor. One difference might be the presence or absence of poly-[ethylene glycol] (PEG) in the complex and its impact on the enhanced permeability and retention (EPR) effect. Further studies are clearly needed to more fully elucidate the influence of composition on tumor-targeted, systemic delivery of nanoparticles.


Assuntos
Portadores de Fármacos/farmacocinética , Neoplasias/tratamento farmacológico , Polietilenoglicóis/farmacocinética , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Humanos , Nanopartículas , Neoplasias/metabolismo , Permeabilidade
20.
Nanomedicine ; 4(4): 318-29, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18676207

RESUMO

To circumvent the problem of reduction of the supermagnetic properties of superparamagnetic iron oxide (SPIO) nanoparticles after chemical modification to conjugate targeting molecules, we have adapted a tumor-targeting nanoimmunoliposome platform technology (scL) to encapsulate and deliver SPIO (scL-SPIO) in vitro and in vivo without chemical modification. Scanning probe microscopy, confocal microscopy, and Prussian blue staining were used to analyze the scL-SPIO and assess intracellular uptake and distribution of SPIO in vitro. In vivo targeting and tumor-specific uptake of scL-SPIO was examined using fluorescent-labeled SPIO. We demonstrated that SPIO encapsulation in the scL complex results in an approximately 11-fold increase in SPIO uptake in human cancer cells in vitro, with distribution to cytoplasm and nucleus. Moreover, the scL nanocomplex specifically and efficiently delivered SPIO into tumor cells after systemic administration, demonstrating the potential of this approach to enhance local tumor concentration and the utility of SPIO for clinical applications.


Assuntos
Neoplasias da Mama/patologia , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/administração & dosagem , Nanopartículas/química , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Compostos Férricos/química , Compostos Férricos/farmacocinética , Humanos , Aumento da Imagem/métodos , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Microscopia Confocal , Microscopia de Varredura por Sonda , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...