Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365778

RESUMO

A molecular design approach was used to create asymmetrical visible light-triggered azo-derivatives that can be good candidates for polymer functionalization. The specific electron-donor substituted molecules were characterized and studied by means of NMR analyses and UV-visible spectroscopy, comparing the results with Time Dependent Density Functional (TD-DFT) calculations. A slow rate of isomerization (ki = 1.5 × 10-4 s-1) was discovered for 4-((2-hydroxy-5methylphenyl) diazenyl)-3-methoxybenzoic acid (AZO1). By methylating this moiety, it was possible to unlock the isomerization mechanism for the second molecule, methyl 3-methoxy-4-((2-methoxy-5-methylphenyl) diazenyl)benzoate (AZO2), reaching promising isomerization rates with visible light irradiation in different solvents. It was discovered that this rate was heightened by one order of magnitude (ki = 3.1 × 10-3 s-1) for AZO2. A computational analysis using density functional (DFT/PBE0) and wavefunction (QD-NEVPT2) methodologies provided insight into the photodynamics of these systems. Both molecules require excitation to the second (S2) excited state situated in the visible region to initiate the isomerization. Two classic mechanisms were considered, namely rotation and inversion, with the former being energetically more favorable. These azo-derivatives show potential that paves the way for future applications as building blocks of functional polymers. Likewise, they could be really effective for the modification of existing commercial polymers, thus transferring their stimuli responsive properties to polymeric bulky structures, converting them into smart materials.

2.
Polymers (Basel) ; 11(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108926

RESUMO

The development of photo-responsive capsules to tune and control the sustained-release of encapsulated actives is a fascinating and challenging route to improve the performances and effectiveness of a wide range of delivery applications. In this work, we report the preparation of visible light-responsive capsules obtained via oil-in-water interfacial polycondensation between modified diacyl-chloride azobenzene moiety and diamine flexible spacer in the presence of cross-linkers with different structures and functionalities. The effect on the release profile of the encapsulated perfume oil was investigated using three flexible spacers with different lengths (1,8-diaminooctane; 1,6-diaminohexane and 1,4-diaminobutane) and two types of cross-linkers (1,3,5-benzenetricarbonyl trichloride and melamine). We analyzed how the properties of microcapsules can be tailored changing the design of the shell structure. Fine tuning of the perfume release profiles was obtained. The changes in capsules size and morphology due to visible light irradiation were monitored via light scattering, optical microscopy and atomic force microscopy. Perfume release was 50% faster in the systems prepared with melamine as the cross-linker. Modelling studies were carried out to support the discussion of the experimental results.

3.
Polymers (Basel) ; 10(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966451

RESUMO

Low-modified liquid-crystalline polyether (CP36), as a model compound, was synthesised with the purpose of preparing a membrane with columnar ionic channels. A free-standing cation permselective biomimetic membrane was successfully prepared and found to have channels made of polymeric columns homeotropically oriented, which was confirmed in X-ray diffraction (XRD) analysis. A first insight into a real-time interaction between two selected cations: H⁺ and Na⁺, and polyether during transport through the polymeric membrane was demonstrated using joined chronoamperometry and Raman spectroscopy techniques. Raman studies unveiled the possibility for smaller protons to bypass the usual ionic pathway via polyetheric chain and use outer part of ionic channel for conduction thanks to ester bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...