Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470737

RESUMO

Magnetic chitosan nanoparticles, synthesized by in situ precipitation, have been used as adsorbents to remove sulfamethoxazole (SMX), a sulfonamide antibiotic dangerous due to its capacity to enter ecosystems. The adsorption of SMX has been carried out in the presence of tertiary wastewaters from a depuration plant to obtain more realistic results. The effect of pH on the adsorption capacity significantly changed when carrying out the experiments in the presence of wastewater. This change has been explained while taking into account the charge properties of both the antibiotic and the magnetic chitosan. The composition of wastewaters has been characterized and discussed as regards its effect on the adsorption capacity of the magnetic chitosan. The models of Elovich and Freundlich have been selected to describe the adsorption kinetics and the adsorption isotherms, respectively. The analysis of these models has suggested that the adsorption mechanism is based on strong chemical interactions between the SMX and the magnetic chitosan, leading to the formation of an SMX multilayer.

2.
Gels ; 9(10)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37888350

RESUMO

A significant bottleneck for the industrial application of lipases stems from their poor stability in the presence of commercial triglycerides. This is mainly due to the inactivating effect of the products of triglyceride oxidation (PTO), which are usually produced when oils and fats, being imported from far countries, are stored for long periods. In this study, the immobilization of a lipase from Candida rugosa on chitosan hydrogels has been carried out following two alternative approaches based on the enzyme adsorption and entrapment to increase the lipase stability under the operating conditions that are typical of oleochemical transformations. The effect of model compounds representing different classes of PTO on a lipase has been studied to optimize the enzyme immobilization method. Particular attention has been devoted to the characterization of the inactivating effect of PTO in nonaqueous media, which are adopted for most industrial applications of lipases.

3.
Gels ; 9(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36661807

RESUMO

Dyes are considered as one the most important classes of contaminants that threaten the environment and human life. The synergy between the adsorption capacity of chitosan hydrogels and the catalytic properties of the enzyme laccase was exploited to improve the removal of contaminants from a liquid stream. The adsorption capacity of a chitosan hydrogel was tested on three different textile dyes. The effect of pH on the adsorption efficiency was dependent on the dye tested: the removal of methylene blue (MB), a cationic dye, was more effective at alkaline values of pH, whereas bromophenol blue (BPB) and Coomassie brilliant blue (BB), both anionic dyes, were more effectively removed under acid environments. The use of laccase immobilized onto chitosan has significantly improved the efficiency of dye removal, exploiting the synergy between the adsorption capacity of chitosan and the catalytic properties of the enzyme. The simultaneous processes of adsorption and enzymatic degradation improved the dye removal whatever the pH value adopted, making the removal efficiency less dependent from the pH changes. The chitosan used as a support for the immobilization of laccases showed good stability under repeated cycles, demonstrating the feasibility of the method developed for the application in wastewater remediation.

4.
Environ Res ; 215(Pt 1): 114214, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058273

RESUMO

Two cyclodextrin-based nanosponges (CD-NSs) were synthesized using diamines with 6 and 12 methylene groups, CDHD6 and CDHD12, respectively, and used as adsorbents to remove 2,4-D from aqueous solutions. The physico-chemical characterization of the CD‒NSs demonstrated that, when using the linker with the longest chain length, the nanosponges show a more compact structure and higher thermal stability, probably due to hydrophobic interactions. SEM micrographs showed significant differences between the two nanosponges used. The adsorption of 2,4-D was assessed in terms of different parameters, including solid/liquid ratio, pH, kinetics and isotherms. Adsorption occurred preferentially at lower pH values and for short-chain crosslinked nanosponges; while the former is explained by the balance of acid-base characteristics of the adsorbent and adsorbate, the latter can be justified by the increase in the crosslinker-crosslinker interactions, predominantly hydrophobic, rather than adsorbent-adsorbate interactions. The maximum adsorption capacity at the equilibrium (qe) was 20,903 mmol/kg, obtained using CDHD12 with an initial 2,4-D concentration of 2 mmol/L. An environmentally friendly strategy, based on alkali desorption, was developed to recycle and reuse the adsorbents. On the basis of the results obtained, cyclodextrin-based nanosponges appear promising materials for an economically feasible removal of phenoxy herbicides, to be used as potential adsorbents for the sustainable management of agricultural wastewaters.


Assuntos
Ciclodextrinas , Herbicidas , beta-Ciclodextrinas , Ácido 2,4-Diclorofenoxiacético , Adsorção , Álcalis , Ciclodextrinas/química , Diaminas , Águas Residuárias , beta-Ciclodextrinas/química
5.
J Environ Manage ; 310: 114701, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217443

RESUMO

Three tailor-made magnetic metal-ceramic nanocomposites, obtained from zeolite A (ZA1 and ZA2) and a natural clinoptilolite (LB1), have been used as adsorbents to remove sulfanilamide (SA), a sulfonamide antibiotic of common use, from water. A patented process for the synthesis of nanocomposites has been suitably modified to maximize the efficiency of the SA removal, as well as to extend the applicability of the materials. The role played by the main process parameters (kinetic, pH, initial concentration of SA) has been characterized. The significant effect of the pH on the SA removal has been explained identifying two possibly coexisting mechanisms of SA adsorption, based on polar and hydrophobic interactions, respectively. The adsorption kinetics have been in all cases described by the pseudo second-order model. The adsorption isotherms obtained with ZA1 have been satisfactorily described by the Langmuir model, suggesting a monolayer adsorption of SA on the magnetic nanocomposites resulting from a uniform surface energy. The isotherms obtained with LB1 could be described by a more complex approach, deriving by the additive superposition of Langmuir and Sips models. In order to ensure an effective removal of the antibiotic and a proper recycle of the magnetic adsorbents, a sustainable regeneration procedure of the exhausted adsorbent has been developed, based on the treatment with a dilute solution of NaOH.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cerâmica , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Nanocompostos/química , Sulfanilamida , Poluentes Químicos da Água/química , Purificação da Água/métodos
6.
J Hazard Mater ; 387: 121716, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31786026

RESUMO

The generation and stabilization of reactive oxygen species (ROS), including the superoxide radical anion (O2-), have a huge potential in environmental remediation and industrial chemical processes, but they still remain a challenge. Here, we elucidate the formation, stability and reactivity of superoxide radicals spontaneously produced on the surface of a hybrid TiO2-acetylacetonate material exposed to air. EPR spectra reveal an exceptional lifetime (up to three years, in air at room temperature) of the adsorbed O2-, which can also be easily regenerated after its decay. The performances of this material in the degradation of organic pollutants in aqueous solution without any light irradiation indicate a heterogeneous catalytic mechanism, mediated by superoxide radicals, with a synergistic homogeneous action of hydroxyl radicals (OH), which are released in solution, as detected by the EPR spin trapping method. The regeneration ability of the adsorbed superoxide radicals by simple exposure to air counteracts the partial instability in aqueous environment of the organic component of the hybrid structure allowing the catalyst reuse. These structural and functional features joined to the simple preparation route open a new perspective in the field of advanced oxidation processes for hybrid TiO2 materials.

7.
Biotechnol Prog ; 34(4): 838-845, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29464927

RESUMO

The aim of the study was to investigate the feasibility of using irreversible electroporation (EP) as a microbial cell disruption technique to extract intracellular lipid within short time and in an eco-friendly manner. An EP circuit was designed and fabricated to obtain 4 kV with frequency of 100 Hz of square waves. The yeast cells of Lipomyces starkeyi (L. starkeyi) were treated by EP for 2-10 min where the distance between electrodes was maintained at 2, 4, and 6 cm. Colony forming units (CFU) were counted to observe the cell viability under the high voltage electric field. The forces of the pulsing electric field caused significant damage to the cell wall of L. starkeyi and the disruption of microbial cells was visualized by field emission scanning electron microscopic (FESEM) image. After breaking the cell wall, lipid was extracted and measured to assess the efficiency of EP over other techniques. The extent of cell inactivation was up to 95% when the electrodes were placed at the distance of 2 cm, which provided high treatment intensity (36.7 kWh m-3 ). At this condition, maximum lipid (63 mg g-1 ) was extracted when the biomass was treated for 10 min. During the comparison, EP could extract 31.88% lipid while the amount was 11.89% for ultrasonic and 16.8% for Fenton's reagent. The results recommend that the EP is a promising technique for lowering the time and solvent usage for lipid extraction from microbial biomass. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:838-845, 2018.


Assuntos
Eletroporação/métodos , Lipomyces/metabolismo , Biomassa , Flagelina/metabolismo , Humanos , Lipídeos/química , Ativador de Plasminogênio Tecidual/metabolismo , Receptores Toll-Like/metabolismo
8.
Biotechnol Lett ; 39(1): 13-23, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27659031

RESUMO

Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.


Assuntos
Biocombustíveis/microbiologia , Microalgas/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biomassa , Eletroporação , Esterificação/fisiologia , Microalgas/efeitos dos fármacos , Microalgas/genética
9.
ACS Appl Mater Interfaces ; 7(39): 21662-7, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26394654

RESUMO

The hybrid sol-gel zirconia-acetylacetonate amorphous material (HSGZ) shows high catalytic activity in oxidative degradation reactions without light or thermal pretreatment. This peculiar HSGZ ability derives from the generation of highly reactive oxygen radical species (ROS) upon exposure to air at room conditions. We disclose the origin of such unique feature by combining EPR and DRUV measurements with first-principles calculations. The organic ligand acetylacetonate (acac) plays a pivotal role in generating and stabilizing the superoxide radical species at the HSGZ-air interfaces. Our results lead the path toward further development of HSGZ and related hybrid materials for ROS-based energy and environmental applications.

10.
ACS Appl Mater Interfaces ; 7(1): 256-63, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25479367

RESUMO

The oxidative degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB), 4-chlorophenoxyacetic acid (4-CPA) and 2,4-dichlorophenoxyacetic acid (2,4 D) by ZrO2-acetylacetonate hybrid catalyst (HSGZ) without light irradiation was assessed. The thermal stability of the catalyst was investigated by thermogravimetry, differential thermal analysis, and Fourier transform infrared spectroscopy. For each herbicide, a virtually complete removal in about 3 days without light irradiation at room temperature was achieved. The removal kinetics of the herbicides has been satisfactorily characterized by a double-stage physico-mathematical model, in the hypothesis that a first-order adsorption on HSGZ surface is followed by the herbicide degradation, catalytically driven by HSGZ surface groups. The long-term use of the HSGZ catalyst was assessed by repeated-batch tests. The specific cost for unit-volume removal of herbicide was evaluated by a detailed cost analysis showing that it is comparable with those pertaining to alternative methods.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2-Metil-4-clorofenoxiacético/química , Herbicidas/química , Zircônio/química , Adsorção , Biodegradação Ambiental , Catálise , Cinética , Luz , Oxirredução , Termogravimetria
11.
Environ Sci Technol ; 46(3): 1755-63, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22191434

RESUMO

A class II hybrid sol-gel material was prepared starting from zirconium(IV) propoxide and 2,4-pentanedione and its catalytic activity in the removal of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) was revealed. The thermal and structural characterization, performed by thermogravimetry, differential thermal analysis, and diffuse reflectance Fourier transform infrared spectroscopy, demonstrated the hybrid nature of the material. The structure of the material can be described as a polymeric network of zirconium oxo clusters, on the surface of which large part of Zr(4+) ions are involved in strong complexation equilibria with acetylacetonate (acac) ligands. The incubation of MCPA in the presence of this material yielded an herbicide removal fraction up to 98%. A two-step mechanism was proposed for the MCPA removal, in which a reversible first-order adsorption of the herbicide is followed by its catalytic degradation. The nature of the products of the MCPA catalytic degradation as well as the reaction conditions adopted do not support typical oxidation pathways involving radicals, suggesting the existence of a different mechanism in which the Zr(4+):acac enol-type complex can act as Lewis acid catalyst.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético/química , Géis/química , Poluentes Químicos da Água/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Zircônio/química , Ácido 2-Metil-4-clorofenoxiacético/análise , Adsorção , Catálise , Análise Diferencial Térmica , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Pentanonas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 196: 242-7, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21982536

RESUMO

Two mesoporous metal oxides, Al(2)O(3) and Fe(2)O(3), were evaluated as regards their ability to remove simazine, a highly persistent herbicide of s-triazines, using a batch equilibrium method. The effect of several experimental parameters such as pH, contact time, initial concentration and sorbent dosage on the sorption of the herbicide was investigated. The maximum sorption of simazine on Al(2)O(3) and Fe(2)O(3) was observed at pH 6.5 and 3.5, respectively. The different sorption capacities of the two oxides were explained considering a set of factors affecting the sorption process such as the surface area and the porosity. The kinetics of sorption on both oxides was described using a pseudo second-order model. The sorption of simazine on Fe(2)O(3) was faster in comparison to that observed on Al(2)O(3). It was shown that aluminum oxide can be regenerated by incineration, and consequently can be considered for industrial treatment systems designed to mitigate the pesticide pollution in the aquatic environments.


Assuntos
Óxido de Alumínio/química , Compostos Férricos/química , Simazina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Modelos Teóricos , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Fatores de Tempo
13.
Environ Sci Technol ; 44(24): 9476-81, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21077667

RESUMO

A single-stage sol-gel route was set to entrap yeast cells of Lipomyces starkeyi in a zirconia (ZrO(2)) matrix, and the remediation ability of the resulting catalyst toward a phenoxy acid herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA), was studied. It was found that the experimental procedure allowed a high dispersion of the microorganisms into the zirconia gel matrix; the ZrO(2) matrix exhibited a significant sorption capacity of the herbicide, and the entrapped cells showed a degradative activity toward MCPA. The combination of these effects leads to a nearly total removal efficiency (>97%) of the herbicide at 30 °C within 1 h incubation time from a solution containing a very high concentration of MCPA (200 mg L(-1)). On the basis of the experimental evidence, a removal mechanism was proposed involving in the first step the sorption of the herbicide molecules on the ZrO(2) matrix, followed by the microbial degradation operated by the entrapped yeasts, the metabolic activity of which appear enhanced under the microenvironmental conditions established within the zirconia matrix. Repeated batch tests of sorption/degradation of entrapped Lipomyces showed that the removal efficiency retained almost the same value of 97.3% after 3 batch tests, with only a subsequent slight decrease, probably due to the progressive saturation of the zirconia matrix.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Lipomyces/metabolismo , Poluentes Químicos da Água/metabolismo , Ácido 2-Metil-4-clorofenoxiacético/análise , Biodegradação Ambiental , Herbicidas/metabolismo , Transição de Fase , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Zircônio/química , Zircônio/metabolismo
14.
J Agric Food Chem ; 58(15): 8630-5, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20681652

RESUMO

Lipomyces starkey were able to survive and proliferate in the presence of olive oil mill wastewaters (OMW), a medium difficult to process by biological treatments, due to the antimicrobial activities of their phenolic components. The microorganisms were grown in the presence of undiluted OMW, without external organic supplements, producing a significant reduction of both the total organic carbon (TOC) and the total phenols content. The OMW treated by L. starkey showed a significant increase of the germination index. The preliminary dilution of OMW enhanced the reduction of polluting components of OMW, leading to a complete TOC removal, as well as to lower levels of residual phenols. The activities of extracellular lipases and esterases significantly increased in the course of the OMW fermentation. A significant increase in lipid yield was observed in L. starkey in the course of the OMW treatment, particularly enhanced when the feedstock was preliminarily diluted. The fatty acid distribution showed a prevalence of oleic acid, demonstrating the potential of L. starkeyi as a source of lipids to be used as a feedstock for the synthesis of II generation biodiesel.


Assuntos
Biocombustíveis/análise , Resíduos Industriais/análise , Metabolismo dos Lipídeos , Lipomyces/metabolismo , Óleos de Plantas/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Biotransformação , Azeite de Oliva , Esgotos/análise
15.
Appl Environ Microbiol ; 73(22): 7291-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17890336

RESUMO

A prolipase from Rhizopus oryzae (proROL) was engineered in order to increase its stability toward lipid oxidation products such as aldehydes with the aim of improving its performance in oleochemical industries. Out of 22 amino acid residues (15 Lys and 7 His) prone to react with aldehydes, 6 Lys and all His residues (except for the catalytic histidine) were chosen and subjected to saturation mutagenesis. In order to quickly and reliably identify stability mutants within the resulting libraries, active variants were prescreened by an activity staining method on agar plates. Active mutants were expressed in Escherichia coli Origami in a 96-well microtiterplate format, and a stability test using octanal as a model deactivating agent was performed. The most stable histidine mutant (H201S) conferred a stability increase of 60%, which was further enhanced to 100% by combination with a lysine mutant (H201S/K168I). This increase in stability was also confirmed for other aldehydes. Interestingly, the mutations did not affect specific activity, as this was still similar to the wild-type enzyme.


Assuntos
Aldeídos/farmacologia , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Rhizopus/enzimologia , Catálise/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Histidina/genética , Histidina/metabolismo , Lipase/química , Lipase/genética , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Mutagênese , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhizopus/genética , Relação Estrutura-Atividade
16.
Biotechnol Prog ; 22(2): 444-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16599560

RESUMO

The alpha-hydroxy esters are increasingly employed in cosmetic, food, and pharmaceutical formulations as they determine reduced skin-irritant effects in comparison with the respective acids, offering similar hygroscopic, emulsifying, and exfoliating properties. The enzymatic synthesis of lactate esters in nonaqueous systems was studied as regards the influence of the critical process parameters, to enable a comparison between the most commonly used synthetic routes, namely, esterification and transesterification. The experimental results showed that the direct esterification of lactic acid with butanol may be limited by the reduced lipase stability in the presence of the acid (substrate) and of the water (product), in particular when solvent-free media are used. The stability of the enzyme is further reduced as polar solvents are required as a result of the polarity of the lactic acid. Therefore, the use of the lactic acid as substrate is of practical interest only when the acid is significantly cheaper in comparison with its short-chain esters. If this is not the case, the transesterification of the ethyl lactate with butanol is to be preferred for the higher flexibility in the choice of the experimental conditions, the operability of solvent-free systems, and the simplicity of the product removal assembly.


Assuntos
Lactatos/metabolismo , Lipase/metabolismo , Catálise , Estabilidade Enzimática , Esterificação , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...