Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Chem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649468

RESUMO

Molecular knots and entanglements form randomly and spontaneously in both biological and synthetic polymer chains. It is known that macroscopic materials, such as ropes, are substantially weakened by the presence of knots, but until now it has been unclear whether similar behaviour occurs on a molecular level. Here we show that the presence of a well-defined overhand knot in a polymer chain substantially increases the rate of scission of the polymer under tension (≥2.6× faster) in solution, because deformation of the polymer backbone induced by the tightening knot activates otherwise unreactive covalent bonds. The fragments formed upon severing of the knotted chain differ from those that arise from cleavage of a similar, but unknotted, polymer. Our solution studies provide experimental evidence that knotting can contribute to higher mechanical scission rates of polymers. It also demonstrates that entanglement design can be used to generate mechanophores that are among the most reactive described to date, providing opportunities to increase the reactivity of otherwise inert functional groups.

2.
J Am Chem Soc ; 144(46): 21088-21095, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350999

RESUMO

The development of efficient and sustainable methods for the synthesis of nitrogen heterocycles is an important goal for the chemical industry. In particular, substituted chiral piperidines are prominent targets due to their prevalence in medicinally relevant compounds and their precursors. A potential biocatalytic approach to the synthesis of this privileged scaffold would be the asymmetric dearomatization of readily assembled activated pyridines. However, nature is yet to yield a suitable biocatalyst specifically for this reaction. Here, by combining chemical synthesis and biocatalysis, we present a general chemo-enzymatic approach for the asymmetric dearomatization of activated pyridines for the preparation of substituted piperidines with precise stereochemistry. The key step involves a stereoselective one-pot amine oxidase/ene imine reductase cascade to convert N-substituted tetrahydropyridines to stereo-defined 3- and 3,4-substituted piperidines. This chemo-enzymatic approach has proved useful for key transformations in the syntheses of antipsychotic drugs Preclamol and OSU-6162, as well as for the preparation of two important intermediates in synthetic routes of the ovarian cancer monotherapeutic Niraparib.


Assuntos
Piperidinas , Piridinas , Piridinas/química , Estereoisomerismo , Catálise , Piperidinas/química , Iminas/química
3.
J Am Chem Soc ; 144(37): 17232-17240, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36067448

RESUMO

We report the synthesis of molecular prime and composite knots by social self-sorting of 2,6-pyridinedicarboxamide (pdc) ligands of differing topicity and stereochemistry. Upon mixing achiral monotopic and ditopic pdc-ligand strands in a 1:1:1 ratio with Lu(III), a well-defined heteromeric complex featuring one of each ligand strand and the metal ion is selectively formed. Introducing point-chiral centers into the ligands leads to single-sense helical stereochemistry of the resulting coordination complex. Covalent capture of the entangled structure by ring-closing olefin metathesis then gives a socially self-sorted trefoil knot of single topological handedness. In a related manner, a heteromeric molecular granny knot (a six-crossing composite knot featuring two trefoil tangles of the same handedness) was assembled from social self-sorting of ditopic and tetratopic multi-pdc strands. A molecular square knot (a six-crossing composite knot of two trefoil tangles of opposite handedness) was assembled by social self-sorting of a ditopic pdc strand with four (S)-centers and a tetratopic strand with two (S)- and six (R)-centers. Each of the entangled structures was characterized by 1H and 13C NMR spectroscopy, mass spectrometry, and circular dichroism spectroscopy. The precise control of composition and topological chirality through social self-sorting enables the rapid assembly of well-defined sequences of entanglements for molecular knots.


Assuntos
Alcenos , Alcenos/química , Ligantes , Espectroscopia de Ressonância Magnética
4.
Chem Soc Rev ; 51(18): 7779-7809, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35979715

RESUMO

Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.


Assuntos
Polímeros , Ânions
5.
Science ; 375(6584): 1035-1041, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239374

RESUMO

Molecular knots are often prepared using metal helicates to cross the strands. We found that coordinatively mismatching oligodentate ligands and metal ions provides a more effective way to synthesize larger knots using Vernier templating. Strands composed of different numbers of tridentate 2,6-pyridinedicarboxamide groups fold around nine-coordinate lanthanide (III) ions to generate strand-entangled complexes with the lowest common multiple of coordination sites for the ligand strands and metal ions. Ring-closing olefin metathesis then completes the knots. A 3:2 (ditopic strand:metal) Vernier assembly produces +31#+31 and -31#-31 granny knots. Vernier complexes of 3:4 (tetratopic strand:metal) stoichiometry selectively form a 378-atom-long trefoil-of-trefoils triskelion knot with 12 alternating strand crossings or, by using opposing stereochemistry at the terminus of the strand, an inverted-core triskelion knot with six alternating and six nonalternating strand crossings.

6.
Nature ; 584(7822): 562-568, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848222

RESUMO

The properties of knots are exploited in a range of applications, from shoelaces to the knots used for climbing, fishing and sailing1. Although knots are found in DNA and proteins2, and form randomly in other long polymer chains3,4, methods for tying5 different sorts of knots in a synthetic nanoscale strand are lacking. Molecular knots of high symmetry have previously been synthesized by using non-covalent interactions to assemble and entangle molecular chains6-15, but in such instances the template and/or strand structure intrinsically determines topology, which means that only one type of knot is usually possible. Here we show that interspersing coordination sites for different metal ions within an artificial molecular strand enables it to be tied into multiple knots. Three topoisomers-an unknot (01) macrocycle, a trefoil (31) knot6-15, and a three-twist (52) knot-were each selectively prepared from the same molecular strand by using transition-metal and lanthanide ions to guide chain folding in a manner reminiscent of the action of protein chaperones16. We find that the metal-ion-induced folding can proceed with stereoinduction: in the case of one knot, a lanthanide(III)-coordinated crossing pattern formed only with a copper(I)-coordinated crossing of particular handedness. In an unanticipated finding, metal-ion coordination was also found to translocate an entanglement from one region of a knotted molecular structure to another, resulting in an increase in writhe (topological strain) in the new knotted conformation. The knot topology affects the chemical properties of the strand: whereas the tighter 52 knot can bind two different metal ions simultaneously, the looser 31 isomer can bind only either one copper(I) ion or one lutetium(III) ion. The ability to tie nanoscale chains into different knots offers opportunities to explore the modification of the structure and properties of synthetic oligomers, polymers and supramolecules.

7.
Nat Chem ; 12(10): 939-944, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747756

RESUMO

Transferring structural information from the nanoscale to the macroscale is a promising strategy for developing adaptive and dynamic materials. Here we demonstrate that the knotting and unknotting of a molecular strand can be used to control, and even invert, the handedness of a helical organization within a liquid crystal. An oligodentate tris(2,6-pyridinedicarboxamide) strand with six point-chiral centres folds into an overhand knot of single handedness upon coordination to lanthanide ions, both in isotropic solutions and in liquid crystals. In achiral liquid crystals, dopant knotted and unknotted strands induce supramolecular helical organizations of opposite handedness, with dynamic switching achievable through in situ knotting and unknotting events. Tying the molecular knot transmits information regarding asymmetry across length scales, from Euclidean point chirality (constitutional chirality) via molecular entanglement (conformation) to liquid-crystal (centimetre-scale) chirality. The magnitude of the effect induced by the tying of the molecular knots is similar to that famously used to rotate a glass rod on the surface of a liquid crystal by synthetic molecular motors.

8.
Chem Sci ; 12(5): 1826-1833, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163946

RESUMO

The length and constitution of spacers linking three 2,6-pyridinedicarboxamide units in a molecular strand influence the tightness of the resulting overhand (open-trefoil) knot that the strand folds into in the presence of lanthanide(iii) ions. The use of ß-hairpin forming motifs as linkers enables a metal-coordinated pseudopeptide with a knotted tertiary structure to be generated. The resulting pseudopeptide knot has one of the highest backbone-to-crossing ratios (BCR)-a measure of knot tightness (a high value corresponding to looseness)-for a synthetic molecular knot to date. Preorganization in the crossing-free turn section of the knot affects aromatic stacking interactions close to the crossing region. The metal-coordinated pseudopeptide knot is compared to overhand knots with other linkers of varying tightness and turn preorganization, and the entangled architectures characterized by NMR spectroscopy, ESI-MS, CD spectroscopy and, in one case, X-ray crystallography. The results show how it is possible to program specific conformational properties into different key regions of synthetic molecular knots, opening the way to systems where knotting can be systematically incorporated into peptide-like chains through design.

9.
J Am Chem Soc ; 141(14): 6054-6059, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30892025

RESUMO

We report on the stereoselective synthesis of both molecular granny and square knots through the use of lanthanide-complexed overhand knots of specific handedness as three-crossing "entanglement synthons". The composite knots are assembled by combining two entanglement synthons (of the same chirality for a granny knot; of opposite handedness for a square knot) in three synthetic steps: first, a CuAAC reaction joins together one end of each overhand knot. Ring-closing olefin metathesis (RCM) then affords the closed-loop knot, locking the topology. This allows the lanthanide ions necessary for stabilizing the entangled conformation of the synthons to subsequently be removed. The composite knots were characterized by 1H and 13C NMR spectroscopy and mass spectrometry and the chirality of the knot stereoisomers compared by circular dichroism. The synthetic strategy of combining building blocks of defined stereochemistry (here overhand knots of Λ- or Δ-handed entanglement) is reminiscent of the chiron approach of using minimalist chiral synthons in the stereoselective synthesis of molecules with multiple asymmetric centers.

10.
J Am Chem Soc ; 141(9): 3952-3958, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742430

RESUMO

The binding of Zn(II) cations to a pentafoil (51) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding "first-sphere" coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1H and 13C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe(II) (and, in some cases, Ni(II) and Zn(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit "second-sphere" coordination of a single chloride ion within the central cavity of the knot through CH···Cl- hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion-knotted-ligand second-sphere coordination complexes.

11.
Angew Chem Int Ed Engl ; 57(33): 10484-10488, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29708636

RESUMO

We report on a rotaxane-like architecture secured by the in situ tying of an overhand knot in the tris(2,6-pyridyldicarboxamide) region of the axle through complexation with a lanthanide ion (Lu3+ ). The increase in steric bulk caused by the knotting locks a crown ether onto the thread. Removal of the lutetium ion unties the knot, and when the axle binding site for the ring is deactivated, the macrocycle spontaneously dethreads. When the binding interaction is switched on again, the crown ether rethreads over the 10 nm length of the untangled strand. The overhand knot can be retied, relocking the threaded structure, by once again adding lutetium ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...