Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(9): 102373, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970394

RESUMO

Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and degraded by the ubiquitin-proteasome system, a pathway termed luminal ER-associated protein degradation. Retrotranslocation is mediated by a conserved protein complex, consisting of the ubiquitin ligase Hrd1 and four associated proteins (Der1, Usa1, Hrd3, and Yos9). Photocrosslinking experiments provided preliminary evidence for the polypeptide path through the membrane but did not reveal specific interactions between amino acids in the substrate and Hrd1 complex. Here, we have used site-specific disulfide crosslinking to map the interactions of a glycosylated model substrate with the Hrd1 complex in live S. cerevisiae cells. Together with available electron cryo-microscopy structures, the results show that the substrate interacts on the luminal side with both a groove in Hrd3 and the lectin domain of Yos9 and inserts a loop into the membrane, with one side of the loop interacting with the lateral gate of Der1 and the other with the lateral gate of Hrd1. Our disulfide crosslinking experiments also show that two Hrd1 molecules can interact through their lateral gates and that Hrd1 autoubiquitination is required for the disassembly of these Hrd1 dimers. Taken together, these data define the path of a polypeptide through the ER membrane and suggest that autoubiquitination of inactive Hrd1 dimers is required to generate active Hrd1 monomers.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Aminoácidos/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Nat Struct Mol Biol ; 28(4): 388-397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782614

RESUMO

The structural conservation across the AAA (ATPases associated with diverse cellular activities) protein family makes designing selective chemical inhibitors challenging. Here, we identify a triazolopyridine-based fragment that binds the AAA domain of human katanin, a microtubule-severing protein. We have developed a model for compound binding and designed ASPIR-1 (allele-specific, proximity-induced reactivity-based inhibitor-1), a cell-permeable compound that selectively inhibits katanin with an engineered cysteine mutation. Only in cells expressing mutant katanin does ASPIR-1 treatment increase the accumulation of CAMSAP2 at microtubule minus ends, confirming specific on-target cellular activity. Importantly, ASPIR-1 also selectively inhibits engineered cysteine mutants of human VPS4B and FIGL1-AAA proteins, involved in organelle dynamics and genome stability, respectively. Structural studies confirm our model for compound binding at the AAA ATPase site and the proximity-induced reactivity-based inhibition. Together, our findings suggest a chemical genetics approach to decipher AAA protein functions across essential cellular processes and to test hypotheses for developing therapeutics.


Assuntos
Proteínas AAA/genética , Katanina/genética , Proteínas Associadas aos Microtúbulos/genética , Piridinas/química , Proteínas AAA/antagonistas & inibidores , Proteínas AAA/ultraestrutura , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Humanos , Katanina/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/genética , Microtúbulos/ultraestrutura , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Piridinas/farmacologia , Triazóis/química
3.
Nat Chem Biol ; 16(8): 817-825, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32694636

RESUMO

Emergence of resistance is a major factor limiting the efficacy of molecularly targeted anticancer drugs. Understanding the specific mutations, or other genetic or cellular changes, that confer drug resistance can help in the development of therapeutic strategies with improved efficacies. Here, we outline recent progress in understanding chemotype-specific mechanisms of resistance and present chemical strategies, such as designing drugs with distinct binding modes or using proteolysis targeting chimeras, to overcome resistance. We also discuss how targeting multiple binding sites with bifunctional inhibitors or identifying collateral sensitivity profiles can be exploited to limit the emergence of resistance. Finally, we highlight how incorporating analyses of resistance early in drug development can help with the design and evaluation of therapeutics that can have long-term benefits for patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Antineoplásicos/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
4.
Cell Chem Biol ; 27(7): 850-857.e6, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32442423

RESUMO

Aberrant chromosome numbers in cancer cells may impose distinct constraints on the emergence of drug resistance-a major factor limiting the long-term efficacy of molecularly targeted therapeutics. However, for most anticancer drugs we lack analyses of drug-resistance mechanisms in cells with different karyotypes. Here, we focus on GSK923295, a mitotic kinesin CENP-E inhibitor that was evaluated in clinical trials as a cancer therapeutic. We performed unbiased selections to isolate inhibitor-resistant clones in diploid and near-haploid cancer cell lines. In diploid cells we identified single-point mutations that can suppress inhibitor binding. In contrast,transcriptome analyses revealed that the C-terminus of CENP-E was disrupted in GSK923295-resistant near-haploid cells. While chemical inhibition of CENP-E is toxic to near-haploid cells, knockout of the CENPE gene does not suppress haploid cell proliferation, suggesting that deletion of the CENP-E C-terminus can confer resistance to GSK923295. Together, these findings indicate that different chromosome copy numbers in cells can alter epistatic dependencies and lead to distinct modes of chemotype-specific resistance.


Assuntos
Antineoplásicos/farmacologia , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Diploide , Haploidia , Heterozigoto , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Domínios Proteicos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sarcosina/análogos & derivados , Sarcosina/farmacologia
5.
Cell Chem Biol ; 26(9): 1263-1273.e5, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31257183

RESUMO

Drug-like inhibitors are often designed by mimicking cofactor or substrate interactions with enzymes. However, as active sites are comprised of conserved residues, it is difficult to identify the critical interactions needed to design selective inhibitors. We are developing an approach, named RADD (resistance analysis during design), which involves engineering point mutations in the target to generate active alleles and testing compounds against them. Mutations that alter compound potency identify residues that make key interactions with the inhibitor and predict target-binding poses. Here, we apply this approach to analyze how diaminotriazole-based inhibitors bind spastin, a microtubule-severing AAA (ATPase associated with diverse cellular activities) protein. The distinct binding poses predicted for two similar inhibitors were confirmed by a series of X-ray structures. Importantly, our approach not only reveals how selective inhibition of the target can be achieved but also identifies resistance-conferring mutations at the early stages of the design process.


Assuntos
Engenharia de Proteínas/métodos , Espastina/efeitos dos fármacos , Espastina/genética , Proteínas AAA/genética , Adenosina Trifosfatases/metabolismo , Amitrol (Herbicida)/química , Fenômenos Bioquímicos , Domínio Catalítico , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Mutação Puntual/genética , Espastina/antagonistas & inibidores , Triazóis/química , Tubulina (Proteína)/química
6.
J Am Chem Soc ; 141(14): 5602-5606, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875216

RESUMO

The bump-hole approach is a powerful chemical biology strategy to specifically probe the functions of closely related proteins. However, for many protein families, such as the ATPases associated with diverse cellular activities (AAA), we lack structural data for inhibitor-protein complexes to design allele-specific chemical probes. Here we report the X-ray structure of a pyrazolylaminoquinazoline-based inhibitor bound to spastin, a microtubule-severing AAA protein, and characterize the residues involved in inhibitor binding. We show that an inhibitor analogue with a single-atom hydrogen-to-fluorine modification can selectively target a spastin allele with an engineered cysteine mutation in its active site. We also report an X-ray structure of the fluoro analogue bound to the spastin mutant. Furthermore, analyses of other mutant alleles suggest how the stereoelectronics of the fluorine-cysteine interaction, rather than sterics alone, contribute to the inhibitor-allele selectivity. This approach could be used to design allele-specific probes for studying cellular functions of spastin isoforms. Our data also suggest how tuning stereoelectronics can lead to specific inhibitor-allele pairs for the AAA superfamily.


Assuntos
Alelos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Espastina/antagonistas & inibidores , Espastina/genética , Animais , Domínio Catalítico , Humanos , Modelos Moleculares
7.
Nat Chem Biol ; 15(5): 444-452, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778202

RESUMO

Spastin is a microtubule-severing AAA (ATPases associated with diverse cellular activities) protein needed for cell division and intracellular vesicle transport. Currently, we lack chemical inhibitors to probe spastin function in such dynamic cellular processes. To design a chemical inhibitor of spastin, we tested selected heterocyclic scaffolds against wild-type protein and constructs with engineered mutations in the nucleotide-binding site that do not substantially disrupt ATPase activity. These data, along with computational docking, guided improvements in compound potency and selectivity and led to spastazoline, a pyrazolyl-pyrrolopyrimidine-based cell-permeable probe for spastin. These studies also identified spastazoline-resistance-conferring point mutations in spastin. Spastazoline, along with the matched inhibitor-sensitive and inhibitor-resistant cell lines we generated, were used in parallel experiments to dissect spastin-specific phenotypes in dividing cells. Together, our findings suggest how chemical probes for AAA proteins, along with inhibitor resistance-conferring mutations, can be designed and used to dissect dynamic cellular processes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Mutação , Espastina/antagonistas & inibidores , Espastina/genética , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Modelos Moleculares , Estrutura Molecular , Espastina/metabolismo
8.
Nat Biotechnol ; 32(5): 465-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24727715

RESUMO

Identifying the proteins synthesized at specific times in cells of interest in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals.


Assuntos
Proteínas/análise , Proteoma/análise , Proteômica/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Biotecnologia , Biologia Computacional , Drosophila melanogaster , Eletroforese em Gel Bidimensional , Escherichia coli , Feminino , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Sondas Moleculares , Especificidade de Órgãos , Ovário/química , Ovário/crescimento & desenvolvimento , Proteínas/química , Proteínas/metabolismo , Proteínas/fisiologia , Proteoma/química , Proteoma/metabolismo , Proteoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...