Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11378, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790782

RESUMO

Photoreduction of CO2 with sunlight to produce solar fuels, also named artificial photosynthesis, is considered one of the most attractive strategies to face the challenge of reducing greenhouse gases and achieving climate neutrality. Following an approach in line with the principles of the circular economy, the low-cost catalytic system (1) based on an industrial by-product such as steel slag was assessed, which was properly modified with nanostructured palladium on its surface in order to make it capable of promoting the conversion of CO2 into methanol and hydrogen through a two-stage process of photoreduction and thermal conversion having formic acid as the intermediate. Notably, for the first time in the literature steel slag is used as photoreduction catalyst.


Assuntos
Hidrogênio , Metanol , Dióxido de Carbono , Fotossíntese , Aço , Água
2.
ChemMedChem ; 12(1): 33-41, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27860401

RESUMO

The availability of well-characterized allosteric modulators is crucial for investigating the allosteric regulation of protein function. In a recently identified inactive conformation of cyclin-dependent kinase 2 (CDK2), an open allosteric pocket was detected and proposed as a site to accommodate allosteric inhibitors. Previous structure-based approaches allowed the identification of a hit compound expected to bind to this pocket. Herein we report the characterization of this compound by X-ray crystallography, which surprisingly provided a chemical structure different from that previously reported. Therefore, the compound was synthesized and completely characterized. X-ray structures of the synthesized and purchased compounds were found to be superimposable. A reaction mechanism was proposed to explain the formation of the structure indicated by crystallography. Moreover, a stereoselective synthesis was developed to evaluate the biological activity of the pure stereoisomers. Modeling studies were performed to unveil the details of the interaction with CDK2. The activity of the obtained compounds was evaluated with various biological assays. Mutagenesis experiments confirmed binding to the allosteric pocket. Finally, the allosteric ligands were shown to inhibit the growth of lung (A549) and ovarian (SKOV3) cancer cell lines. Therefore, this report presents a thorough chemical and biological characterization of the first small-molecule ligands to be used as probes to study the allosteric modulation of CDK2 activity.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinolinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
3.
PLoS One ; 11(4): e0154066, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100206

RESUMO

Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human kinome.


Assuntos
Quinase 2 Dependente de Ciclina/química , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Humanos , Conformação Proteica
4.
J Chem Theory Comput ; 10(6): 2557-68, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580776

RESUMO

Due to the well-known structure-function paradigm, conformational equilibrium plays a major role in molecular recognition. Therefore, a deep understanding of the conformational profile of small organic molecules is an essential prerequisite to modern computer-assisted drug design. However, a thorough analysis and a meaningful representation of the conformational landscape of drug-like molecules remains a challenge. The thermodynamic equilibrium of conformational states can be described in terms of probability density function (PDF) defined in the space of the relevant degrees of freedom of the system. In principle, this PDF could be estimated by traditional histogram methods, which are, however, hampered by several limitations when the variables forming the space are more than two or three. Here, we present an unsupervised parametric fitting procedure based on cluster analysis, aimed at estimating the PDF in the conformational space of small drug-like molecules with low sensitivity to data dimensionality. Indeed, data are represented in the dihedral space of the molecule and clustered using a simple adaptation of the standard k-means algorithm for periodic data. In the final step of the analysis, the PDF is derived as a linear combination of multivariate circular Gaussian distributions. We show that exploiting the analytic properties of Gaussian distributions, the proposed approach makes it possible to analyze the conformational ensemble in higher dimensional spaces with several advantages over the histogram-based methods. The posterior analysis of the PDF also helps identify a minimal subset of variables able to provide a meaningful representation of the conformational space. We tested our approach on alanine dipeptide, alanine tetrapeptide, and rilpivirine with satisfactory results compared to standard histogram-based methods and to those based on chemical intuition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...