Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(16): 11476-11497, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561958

RESUMO

Aiming at the inhaled treatment of pulmonary diseases, the optimization process of the previously reported MAPI compound 92a is herein described. The project was focused on overcoming the chemical stability issue and achieving a balanced bronchodilator/anti-inflammatory profile in rats in order to be confident in a clinical effect without having to overdose at one of the biological targets. The chemical strategy was based on fine-tuning of the substitution pattern in the muscarinic and PDE4 structural portions of the dual pharmacology compounds, also making use of the analysis of a proprietary crystal structure in the PDE4 catalytic site. Compound 10f was identified as a chemically stable, potent, and in vivo balanced MAPI lead compound, as assessed in bronchoconstriction and inflammation assays in rats after intratracheal administration. After the in-depth investigation of the pharmacological and solid-state profile, 10f proved to be safe and suitable for development.


Assuntos
Inibidores da Fosfodiesterase 4 , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Anti-Inflamatórios/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
2.
Sci Transl Med ; 14(638): eabl6328, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353541

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as ß2-adrenergic receptor (ß2-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by ß2-ARs in airway structural and inflammatory cells. Displacement of the PI3Kγ-anchored pool of protein kinase A (PKA) by an inhaled, cell-permeable, PI3Kγ mimetic peptide (PI3Kγ MP) inhibited a pool of subcortical PDE4B and PDE4D and safely increased cAMP in the lungs, leading to airway smooth muscle relaxation and reduced neutrophil infiltration in a murine model of asthma. In human bronchial epithelial cells, PI3Kγ MP induced unexpected cAMP and PKA elevations restricted to the vicinity of the cystic fibrosis transmembrane conductance regulator (CFTR), the ion channel controlling mucus hydration that is mutated in cystic fibrosis (CF). PI3Kγ MP promoted the phosphorylation of wild-type CFTR on serine-737, triggering channel gating, and rescued the function of F508del-CFTR, the most prevalent CF mutant, by enhancing the effects of existing CFTR modulators. These results unveil PI3Kγ as the regulator of a ß2-AR/cAMP microdomain central to smooth muscle contraction, immune cell activation, and epithelial fluid secretion in the airways, suggesting the use of a PI3Kγ MP for compartment-restricted, therapeutic cAMP elevation in chronic obstructive respiratory diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fosfatidilinositol 3-Quinase , Animais , Classe Ib de Fosfatidilinositol 3-Quinase , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Inflamação , Camundongos , Peptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
3.
J Med Chem ; 64(13): 9100-9119, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34142835

RESUMO

In this paper, we report the discovery of dual M3 antagonist-PDE4 inhibitor (MAPI) compounds for the inhaled treatment of pulmonary diseases. The identification of dual compounds was enabled by the intuition that the fusion of a PDE4 scaffold derived from our CHF-6001 series with a muscarinic scaffold through a common linking ring could generate compounds active versus both the transmembrane M3 receptor and the intracellular PDE4 enzyme. Two chemical series characterized by two different muscarinic scaffolds were investigated. SAR optimization was aimed at obtaining M3 nanomolar affinity coupled with nanomolar PDE4 inhibition, which translated into anti-bronchospastic efficacy ex vivo (inhibition of rat trachea contraction) and into anti-inflammatory efficacy in vitro (inhibition of TNFα release). Among the best compounds, compound 92a achieved the goal of demonstrating in vivo efficacy and duration of action in both the bronchoconstriction and inflammation assays in rat after intratracheal administration.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Descoberta de Drogas , Inibidores da Fosfodiesterase 4/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Receptor Muscarínico M3/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Cobaias , Masculino , Estrutura Molecular , Inibidores da Fosfodiesterase 4/química , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Receptor Muscarínico M3/metabolismo , Relação Estrutura-Atividade
4.
J Pharmacol Exp Ther ; 352(3): 568-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576073

RESUMO

CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide] is a novel phosphodiesterase 4 (PDE4) inhibitor designed for use in pulmonary diseases by inhaled administration. Intratracheal administration of CHF6001 to ovalbumin-sensitized Brown-Norway rats suppressed the antigen-induced decline of lung functions (ED50 = 0.1 µmol/kg) and antigen-induced eosinophilia (ED50 = 0.03 µmol/kg) when administered (0.09 µmol/kg) up to 24 hours before antigen challenge, in agreement with CHF6001-sustained lung concentrations up to 72 hours after intratracheal treatment (mean residence time 26 hours). Intranasal, once daily administration of CHF6001 inhibited neutrophil infiltration observed after 11 days of tobacco smoke exposure in mice, both upon prophylactic (0.15-0.45 µmol/kg per day) or interventional (0.045-0.45 µmol/kg per day) treatment. CHF6001 was ineffective in reversing ketamine/xylazine-induced anesthesia (a surrogate of emesis in rat) up to 5 µmol/kg administered intratracheally, a dose 50- to 150-fold higher than anti-inflammatory ED50 observed in rats. When given topically to ferrets, no emesis and nausea were evident up to 10 to 20 µmol/kg, respectively, whereas the PDE4 inhibitor GSK-256066 (6-[3-(dimethylcarbamoyl)phenyl]sulfonyl-4-(3-methoxyanilino)-8-methylquinoline-3-carboxamide) induced nausea at 1 µmol/kg intratracheally. A 14-day inhalation toxicology study in rats showed a no-observed-adverse-effect level dose of 4.4 µmol/kg per day for CHF6001, lower than the 0.015 µmol/kg per day for GSK-256066. CHF6001 was found effective and extremely well tolerated upon topical administration in relevant animal models, and may represent a step forward in PDE4 inhibition for the treatment of asthma and chronic obstructive respiratory disease.


Assuntos
Anti-Inflamatórios/administração & dosagem , Inibidores da Fosfodiesterase 4/administração & dosagem , Sulfonamidas/administração & dosagem , para-Aminobenzoatos/administração & dosagem , Administração por Inalação , Administração Tópica , Animais , Anti-Inflamatórios/química , Avaliação Pré-Clínica de Medicamentos/métodos , Furões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 4/química , Ratos , Ratos Endogâmicos BN , Ratos Wistar , Sulfonamidas/química , para-Aminobenzoatos/química
5.
PLoS One ; 7(8): e42454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905134

RESUMO

BACKGROUND: The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1. METHODOLOGY/PRINCIPAL FINDINGS: By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves. CONCLUSIONS: Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases.


Assuntos
Canais de Cálcio/biossíntese , Canais de Cálcio/fisiologia , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/fisiologia , Sistema Respiratório/patologia , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica/métodos , Inflamação , Interleucina-8/biossíntese , Interleucina-8/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Liso/metabolismo , Fumar , Canal de Cátion TRPA1 , Canais de Cátion TRPV/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...