Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 26(2): 441-462, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37869901

RESUMO

AIMS: The objective of this umbrella review and meta-analysis was to evaluate the effect of diabetes on risk of dementia, as well as the mitigating effect of antidiabetic treatments. MATERIALS AND METHODS: We conducted a systematic umbrella review on diabetes and its treatment, and a meta-analysis focusing on treatment. We searched MEDLINE/PubMed, Embase, PsycINFO, CINAHL and the Cochrane Library for systematic reviews and meta-analyses assessing the risk of cognitive decline/dementia in individuals with diabetes until 2 July 2023. We conducted random-effects meta-analyses to obtain risk ratios and 95% confidence intervals estimating the association of metformin, thiazolidinediones, pioglitazone, dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, meglitinides, insulin, sulphonylureas, glucagon-like peptide-1 receptor agonists (GLP1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) with risk of dementia from cohort/case-control studies. The subgroups analysed included country and world region. Risk of bias was assessed with the AMSTAR tool and Newcastle-Ottawa Scale. RESULTS: We included 100 reviews and 27 cohort/case-control studies (N = 3 046 661). Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with significant reduction in risk of dementia. When studies examining metformin were divided by country, the only significant effect was for the United States. Moreover, the effect of metformin was significant in Western but not Eastern populations. No significant effect was observed for dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, or insulin, while meglitinides and sulphonylureas were associated with increased risk. CONCLUSIONS: Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with reduced risk of dementia. More longitudinal studies aimed at determining their relative benefit in different populations should be conducted.


Assuntos
Demência , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinedionas , Humanos , Demência/epidemiologia , Demência/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes/efeitos adversos , Insulina/uso terapêutico , Metformina/efeitos adversos , Pioglitazona/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos de Sulfonilureia/efeitos adversos , Revisões Sistemáticas como Assunto , Tiazolidinedionas/efeitos adversos
2.
J Biol Chem ; 299(11): 105295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774976

RESUMO

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Assuntos
Biotinilação , Esteróis , Proteínas rab de Ligação ao GTP , Humanos , Colesterol/biossíntese , Colesterol/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Esteróis/biossíntese , Esteróis/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Transporte Proteico/genética
3.
BBA Adv ; 1: 100003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082009

RESUMO

Objective: Probucol is a cholesterol-lowering agent whose ability to prevent atherosclerosis is currently under study. Herein, we investigate the putative mechanism of probucol by observation of changes in cellular cholesterol efflux and lipid droplet morphology in macrophages. Results: The inhibitory activity of probucol was assessed in non-foam or foam cell macrophages expressing ABCA1 generated by treatment with fetal calf serum (FCS) alone or in combination with acetylated LDL, respectively. Probucol inhibited cholesterol efflux to apolipoprotein A-I (apoA-I) by 31.5±0.1% in THP-1 non-foam cells and by 18.5±0.2% in foam cells. In probucol-treated non-foam THP-1 cells, nascent high density lipoprotein (nHDL) particles with a diameter < 7 nm were generated, while in probucol-treated THP-1 foam cells nHDL particles of > 7 nm in diameter containing cholesterol were produced. Foam cells also displayed a significant accumulation of free cholesterol at the plasma membrane, as measured by percent cholestenone formed. Intracellularly, there was a significant decrease in lipid droplet number and an increase in size in probucol-treated THP-1 foam cells when compared to non-treated cells. Conclusions: We report for the first time that probucol is unable to completely inhibit cholesterol efflux in foam cells to the same extent as in non-foam cells. Indeed, functional nHDL is released from foam cells in the presence of probucol. This difference in inhibitory effect could potentially be explained by changes in the plasma membrane pool as well as intracellular cholesterol storage independently of ABCA1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...