Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 644608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747968

RESUMO

Reprogramming tumor infiltrating myeloid cells to elicit pro-inflammatory responses is an exciting therapeutic maneouver to improve anti-tumor responses. We recently demonstrated that a distinct microtubule-targeting drug, plinabulin-a clinical-stage novel agent-modulates dendritic cell maturation and enhances anti-tumor immunity. Here, we investigated the effects of plinabulin on macrophage polarization in vitro and in vivo. Plinabulin monotherapy induced significant tumor growth inhibition in mice bearing subcutaneous MC38 colon cancer. Importantly, the regressing tumors were characterized by an increase in M1-like/M2-like tumor-associated macrophages (TAM) ratio. The efficacy of plinabulin remained unaltered in T cell-deficient Rag2-/- mice, suggesting an important role of macrophages in driving the drug's anti-tumor effect. Exposure of murine and healthy human macrophages to plinabulin induced polarization toward the M1 phenotype, including increased expression of co-stimulatory molecules CD80, CD86 and pro-inflammatory cytokines IL-1ß, IL-6, and IL-12. M2-associated immunosuppressive cytokines IL-10 and IL-4 were reduced. This pro-inflammatory M1-like skewing of TAMs in response to plinabulin was dependent on the JNK pathway. Functionally, plinabulin-polarized human M1 macrophages directly killed HuT 78 tumor cells in vitro. Importantly, plinabulin induced a functional M1-like polarization of tumor infiltrating macrophages in murine tumors as well as in tumor samples from ovarian cancer patients, by preferentially triggering M1 proliferation. Our study uncovers a novel immunomodulatory effect of plinabulin in directly triggering M1 polarization and proliferation as well as promoting TAM anti-tumoral effector functions.

2.
Oncoimmunology ; 6(10): e1342909, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123951

RESUMO

The universal modular chimeric antigen receptor (UniCAR) platform redirects CAR-T cells using a separated, soluble targeting module with a short half-life. This segregation allows precise controllability and flexibility. Herein we show that the UniCAR platform can be used to efficiently target solid cancers in vitro and in vivo using a pre-clinical prostate cancer model which overexpresses prostate stem cell antigen (PSCA). Short-term administration of the targeting module to tumor bearing immunocompromised mice engrafted with human UniCAR-T cells significantly delayed tumor growth and prolonged survival of recipient mice both in a low and high tumor burden model. In addition, we analyzed phenotypic and functional changes of cancer cells and UniCAR-T cells in association with the administration of the targeting module to reveal potential immunoevasive mechanisms. Most notably, UniCAR-T cell activation induced upregulation of immune-inhibitory molecules such as programmed death ligands. In conclusion, this work illustrates that the UniCAR platform mediates potent anti-tumor activity in a relevant in vitro and in vivo solid tumor model.

3.
Stem Cells ; 34(8): 2224-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090603

RESUMO

Skeletal metastasis of breast cancer is associated with a poor prognosis and significant morbidity. Investigations in other solid tumors have revealed an impairment in hematopoietic function upon bone marrow invasion. However, the interaction between disseminated breast cancer cells and the bone marrow microenvironment which harbors them has not been addressed comprehensively. Employing advanced co-culture assays, proteomic studies, organotypic models as well as in vivo xenotransplant models, we define the consequences of this interaction on the stromal compartment of bone marrow, affected molecular pathways and subsequent effects on the hematopoietic stem and progenitor cells (HSPCs). The results showed a basic fibroblast growth factor (bFGF)-mediated, synergistic increase in proliferation of breast cancer cells and mesenchymal stromal cells (MSCs) in co-culture. The stromal induction was associated with elevated phosphoinositide-3 kinase (PI3K) signaling in the stroma, which coupled with elevated bFGF levels resulted in increased migration of breast cancer cells towards the MSCs. The perturbed cytokine profile in the stroma led to reduction in the osteogenic differentiation of MSCs via downregulation of platelet-derived growth factor-BB (PDGF-BB). Long term co-cultures of breast cancer cells, HSPCs, MSCs and in vivo studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl) /SzJ (NSG) mice showed a reduced support for HSPCs in the altered niche. The resultant non- conducive phenotype of the niche for HSPC support emphasizes the importance of the affected molecular pathways in the stroma as clinical targets. These findings can be a platform for further development of therapeutic strategies aiming at the blockade of bone marrow support to disseminated breast cancer cells. Stem Cells 2016;34:2224-2235.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Microambiente Celular , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Citocinas/metabolismo , Regulação para Baixo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Modelos Biológicos , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...