Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 42(38): 2783-2800, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37587333

RESUMO

To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/genética , Neoplasias/genética , Carcinogênese , RNA/genética , Transformação Celular Neoplásica
2.
Genome Biol ; 24(1): 40, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869353

RESUMO

BACKGROUND: There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available. RESULTS: We developed a bioinformatic pipeline, "HiCFlow," that performs haplotype assembly and visualization of parental chromatin architecture. We benchmarked the pipeline using prototype haplotype phased Hi-C data from GM12878 cells at three disease-associated imprinted gene clusters. Using Region Capture Hi-C and Hi-C data from human cell lines (1-7HB2, IMR-90, and H1-hESCs), we can robustly identify the known stable allele-specific interactions at the IGF2-H19 locus. Other imprinted loci (DLK1 and SNRPN) are more variable and there is no "canonical imprinted 3D structure," but we could detect allele-specific differences in A/B compartmentalization. Genome-wide, when topologically associating domains (TADs) are unbiasedly ranked according to their allele-specific contact frequencies, a set of allele-specific TADs could be defined. These occur in genomic regions of high sequence variation. In addition to imprinted genes, allele-specific TADs are also enriched for allele-specific expressed genes. We find loci that have not previously been identified as allele-specific expressed genes such as the bitter taste receptors (TAS2Rs). CONCLUSIONS: This study highlights the widespread differences in chromatin conformation between heterozygous loci and provides a new framework for understanding allele-specific expressed genes.


Assuntos
Genoma Humano , Impressão Genômica , Família Multigênica , Humanos , Alelos , Cromatina
3.
PLoS One ; 18(1): e0280364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649303

RESUMO

The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.


Assuntos
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Perfilação da Expressão Gênica , Prognóstico , Linfócitos T CD4-Positivos
4.
Nucleic Acids Res ; 50(19): 11331-11343, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36243981

RESUMO

Transcription of E-cadherin, a tumor suppressor that plays critical roles in cell adhesion and the epithelial-mesenchymal transition, is regulated by a promoter-associated non-coding RNA (paRNA). The sense-oriented paRNA (S-paRNA) includes a functional C/A single nucleotide polymorphism (SNP rs16260). The A-allele leads to decreased transcriptional activity and increased prostate cancer risk. The polymorphic site is known to affect binding of a microRNA-guided Argonaute 1 (AGO1) complex and recruitment of chromatin-modifying enzymes to silence the promoter. Yet the SNP is distant from the microRNA-AGO1 binding domain in both primary sequence and secondary structure, raising the question of how regulation occurs. Here we report the 3D NMR structure of the 104-nucleotide domain of the S-paRNA that encompasses the SNP and the microRNA-binding site. We show that the A to C change alters the locally dynamic and metastable structure of the S-paRNA, revealing how the single nucleotide mutation regulates the E-cadherin promoter through its effect on the non-coding RNA structure.


Assuntos
MicroRNAs , Polimorfismo de Nucleotídeo Único , Masculino , Humanos , Caderinas/genética , Caderinas/metabolismo , RNA não Traduzido/genética , MicroRNAs/genética , Nucleotídeos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
5.
PLoS Genet ; 18(6): e1010230, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709096

RESUMO

Central nervous system-expressed long non-coding RNAs (lncRNAs) are often located in the genome close to protein coding genes involved in transcriptional control. Such lncRNA-protein coding gene pairs are frequently temporally and spatially co-expressed in the nervous system and are predicted to act together to regulate neuronal development and function. Although some of these lncRNAs also bind and modulate the activity of the encoded transcription factors, the regulatory mechanisms controlling co-expression of neighbouring lncRNA-protein coding genes remain unclear. Here, we used high resolution NG Capture-C to map the cis-regulatory interaction landscape of the key neuro-developmental Paupar-Pax6 lncRNA-mRNA locus. The results define chromatin architecture changes associated with high Paupar-Pax6 expression in neurons and identify both promoter selective as well as shared cis-regulatory-promoter interactions involved in regulating Paupar-Pax6 co-expression. We discovered that the TCF7L2 transcription factor, a regulator of chromatin architecture and major effector of the Wnt signalling pathway, binds to a subset of these candidate cis-regulatory elements to coordinate Paupar and Pax6 co-expression. We describe distinct roles for Paupar in Pax6 expression control and show that the Paupar DNA locus contains a TCF7L2 bound transcriptional silencer whilst the Paupar transcript can act as an activator of Pax6. Our work provides important insights into the chromatin interactions, signalling pathways and transcription factors controlling co-expression of adjacent lncRNAs and protein coding genes in the brain.


Assuntos
RNA Longo não Codificante , Cromatina/genética , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética
6.
Wiley Interdiscip Rev RNA ; 13(5): e1711, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35037405

RESUMO

Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Assuntos
RNA , Termômetros , Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , RNA/metabolismo , RNA Bacteriano/metabolismo , Virulência/genética
7.
Noncoding RNA ; 7(2)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946639

RESUMO

The discovery of thousands of non-coding RNAs (ncRNAs) pervasively transcribed from the eukaryotic genome has revolutionized the "central dogma" of biology and shifted the attention on the role of RNAs as regulatory molecules, more than simply traditional mediators of genomic information [...].

8.
Noncoding RNA ; 7(1)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799493

RESUMO

Alternative splicing is a highly fine-tuned regulated process and one of the main drivers of proteomic diversity across eukaryotes. The vast majority of human multi-exon genes is alternatively spliced in a cell type- and tissue-specific manner, and defects in alternative splicing can dramatically alter RNA and protein functions and lead to disease. The eukaryotic genome is also intensively transcribed into long and short non-coding RNAs which account for up to 90% of the entire transcriptome. Over the years, lncRNAs have received considerable attention as important players in the regulation of cellular processes including alternative splicing. In this review, we focus on recent discoveries that show how lncRNAs contribute significantly to the regulation of alternative splicing and explore how they are able to shape the expression of a diverse set of splice isoforms through several mechanisms. With the increasing number of lncRNAs being discovered and characterized, the contribution of lncRNAs to the regulation of alternative splicing is likely to grow significantly.

9.
RNA ; 26(9): 1234-1246, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457084

RESUMO

The wide prevalence and regulated expression of long noncoding RNAs (lncRNAs) highlight their functional roles, but the molecular basis for their activities and structure-function relationships remains to be investigated, with few exceptions. Among the relatively few lncRNAs conserved over significant evolutionary distances is the long intergenic noncoding RNA (lincRNA) Cyrano (orthologous to human OIP5-AS1), which contains a region of 300 highly conserved nucleotides within tetrapods, which in turn contains a functional stretch of 26 nt of deep conservation. This region binds to and facilitates the degradation of the microRNA miR-7, a short ncRNA with multiple cellular functions, including modulation of oncogenic expression. We probed the secondary structure of Cyrano in vitro and in cells using chemical and enzymatic probing, and validated the results using comparative sequence analysis. At the center of the functional core of Cyrano is a cloverleaf structure maintained over the >400 million years of divergent evolution that separates fish and primates. This strikingly conserved motif provides interaction sites for several RNA-binding proteins and masks a conserved recognition site for miR-7. Conservation in this region strongly suggests that the function of Cyrano depends on the formation of this RNA structure, which could modulate the rate and efficiency of degradation of miR-7.


Assuntos
Sequência Conservada/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Humanos , Camundongos , MicroRNAs/genética , Primatas/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Peixe-Zebra
10.
Essays Biochem ; 63(1): 177-186, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30967478

RESUMO

Chromatin architecture has a significant impact on gene expression. Evidence in the last two decades support RNA as an important component of chromatin structure [Genes Dev. (2005) 19, 1635-1655; PLoS ONE (2007) 2, e1182; Nat. Genet. (2002) 30, 329-334]. Long non-coding RNAs (lncRNAs) are able to control chromatin structure through nucleosome positioning, interaction with chromatin re-modellers and chromosome looping. These functions are carried out in cis at the site of lncRNAs transcription or in trans at distant loci. While the evidence for a role in lncRNAs in regulating gene expression through chromatin interactions is increasing, there is still very little conclusive evidence for a potential role in looping organisation. Here, we review models for the involvement of lncRNAs in genome architecture and the experimental evidence to support them.


Assuntos
Cromatina/genética , Genoma/genética , RNA Longo não Codificante/genética , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , DNA/química , DNA/genética , Humanos , Conformação de Ácido Nucleico , Conformação Proteica
11.
Bioinformatics ; 35(15): 2529-2534, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535182

RESUMO

MOTIVATION: Long non-coding RNAs (lncRNAs) have gained increasing relevance in epigenetic regulation and nuclear functional organization. High-throughput sequencing approaches have revealed frequent non-coding transcription in promoter-proximal regions. However, a comprehensive catalogue of promoter-associated RNAs (paRNAs) and an analysis of the possible interactions with neighboring genes and genomic regulatory elements are missing. RESULTS: Integrating data from multiple cell types and experimental platforms we identified thousands of paRNAs in the human genome. paRNAs are transcribed in both sense and antisense orientation, are mostly non-polyadenylated and retained in the cell nucleus. Transcriptional regulators, epigenetic effectors and activating chromatin marks are enriched in paRNA-positive promoters. Furthermore, paRNA-positive promoters exhibit chromatin signatures of both active promoters and enhancers. Promoters with paRNAs reside preferentially at chromatin loop boundaries, suggesting an involvement in anchor site recognition and chromatin looping. Importantly, these features are independent of the transcriptional state of neighboring genes. Thus, paRNAs may act as cis-regulatory modules with an impact on local recruitment of transcription factors, epigenetic state and chromatin loop organization. This study provides a comprehensive analysis of the promoter-proximal transcriptome and offers novel insights into the roles of paRNAs in epigenetic processes and human diseases. AVAILABILITY AND IMPLEMENTATION: Genomic coordinates of predicted paRNAs are available at https://figshare.com: https://doi.org/10.6084/m9.figshare.7392791.v1 and https://doi.org/10.6084/m9.figshare.4856630.v2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Longo não Codificante/genética , Transcriptoma , Cromatina , Epigênese Genética , Humanos , Regiões Promotoras Genéticas
12.
RNA Biol ; 14(12): 1742-1755, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28805496

RESUMO

Cis-natural antisense transcripts (cis-NATs) are long noncoding RNAs transcribed from the opposite strand and overlapping coding and noncoding genes on the sense strand. cis-NATs are widely present in the human genome and can be involved in multiple mechanisms of gene regulation. Here, we describe the presence of cis-NATs in the 3' distal region of the c-MYC locus and investigate their impact on transcriptional regulation of this key oncogene in human cancers. We found that cis-NATs are produced as consequence of the activation of cryptic transcription initiation sites in the 3' distal region downstream of the c-MYC 3'UTR. The process is tightly regulated and leads to the formation of two main transcripts, NAT6531 and NAT6558, which differ in their ability to fold into stem-loop secondary structures. NAT6531 acts as a substrate for DICER and as a source of small RNAs capable of modulating c-MYC transcription. This complex system, based on the interplay between cis-NATs and NAT-derived small RNAs, may represent an important layer of epigenetic regulation of the expression of c-MYC and other genes in human cells.


Assuntos
Regulação da Expressão Gênica , Genes myc , RNA Antissenso/genética , Transcrição Gênica , Regiões 3' não Traduzidas , Acetilação , Linhagem Celular Tumoral , Clonagem Molecular , Epigênese Genética , Loci Gênicos , Histonas/metabolismo , Humanos , Modelos Biológicos , Conformação de Ácido Nucleico , RNA não Traduzido/genética , Ribonuclease III/metabolismo , Sítio de Iniciação de Transcrição
13.
Nat Commun ; 8: 15622, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555645

RESUMO

Long noncoding RNAs are emerging players in the epigenetic machinery with key roles in development and diseases. Here we uncover a complex network comprising a promoter-associated noncoding RNA (paRNA), microRNA and epigenetic regulators that controls transcription of the tumour suppressor E-cadherin in epithelial cancers. E-cadherin silencing relies on the formation of a complex between the paRNA and microRNA-guided Argonaute 1 that, together, recruit SUV39H1 and induce repressive chromatin modifications in the gene promoter. A single nucleotide polymorphism (rs16260) linked to increased cancer risk alters the secondary structure of the paRNA, with the risk allele facilitating the assembly of the microRNA-guided Argonaute 1 complex and gene silencing. Collectively, these data demonstrate the role of a paRNA in E-cadherin regulation and the impact of a noncoding genetic variant on its function. Deregulation of paRNA-based epigenetic networks may contribute to cancer and other diseases making them promising targets for drug discovery.


Assuntos
Proteínas Argonautas/genética , Caderinas/genética , Fatores de Iniciação em Eucariotos/genética , Inativação Gênica , Metiltransferases/genética , Neoplasias/genética , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Alelos , Antígenos CD , Diferenciação Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Masculino , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...