Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 893: 173824, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347821

RESUMO

The polyether ionophore salinomycin (SAL) has been found to selectively target breast cancer cells, including those with stem-like phenotype. On the other hand, SAL amides and esters obtained through derivatisation of the C1 carboxyl of the ionophore were found to exhibit anticancer properties, whilst reducing potential toxicity issues which often occur during standard chemotherapy. However, the studies on the activity and especially on the mechanisms of action of this class of semi-synthetic products against breast cancer cells are very limited. Therefore, in this work, we confirmed the anti-breast cancer activity of SAL, and further investigated the potential of its selected C1 amide and ester analogs to destroy breast cancer cells, including the highly aggressive triple-negative MDA-MB-231 cells. Importantly, SAL esters were found to be more potent than the native structure and their amide counterparts. Our data revealed that SAL ester derivatives, particularly compounds 5 and 7 (2,2,2-trifluoroethyl and benzotriazole ester of SAL, respectively), increase the level of p-eIF2α (Ser51) and IRE1α proteins. Additionally, an increased level of DNA damage indicators such as γH2AX protein and modified guanine (8-oxoG) was observed. These findings suggest that the apoptosis of MCF-7 and MDA-MB-231 cells induced by the most promising esters derived from SAL may result from the interaction between ER stress and DNA damage response mechanisms.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ésteres/farmacologia , Piranos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Endorribonucleases/metabolismo , Ésteres/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Piranos/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
2.
Cancers (Basel) ; 11(10)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614827

RESUMO

Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in the chronic phase (CML-CP). However, it is unlikely that they can completely "cure" the disease. This might be because some subpopulations of CML-CP cells such as stem and progenitor cells are resistant to chemotherapy, even to the new generation of TKIs. Therefore, it is important to look for new methods of treatment to improve therapeutic outcomes. Previously, we have shown that class I p21-activated serine/threonine kinases (PAKs) remained active in TKI-naive and TKI-treated CML-CP leukemia stem and early progenitor cells. In this study, we aimed to determine if simultaneous inhibition of BCR-ABL1 oncogenic tyrosine kinase and PAK1/2 serine/threonine kinase exert better anti-CML effect than that of individual treatments. PAK1 was inhibited by small-molecule inhibitor IPA-3 (p21-activated kinase inhibitor III), PAK2 was downregulated by specific short hairpin RNA (shRNA), and BCR-ABL1 tyrosine kinase was inhibited by imatinib (IM). The studies were conducted by using (i) primary CML-CP stem/early progenitor cells and normal hematopoietic counterparts isolated from the bone marrow of newly diagnosed patients with CML-CP and from healthy donors, respectively, (ii) CML-blast phase cell lines (K562 and KCL-22), and (iii) from BCR-ABL1-transformed 32Dcl3 cell line. Herein, we show that inhibition of the activity of PAK1 and/or PAK2 enhanced the effect of IM against CML cells without affecting the normal cells. We observed that the combined use of IM with IPA-3 increased the inhibition of growth and apoptosis of leukemia cells. To evaluate the type of interaction between the two drugs, we performed median effect analysis. According to our results, the type and strength of drug interaction depend on the concentration of the drugs tested. Generally, combination of IM with IPA-3 at the 50% of the cell kill level (EC50) generated synergistic effect. Based on our results, we hypothesize that IM, a BCR-ABL1 tyrosine kinase inhibitor, combined with a PAK1/2 inhibitor facilitates eradication of CML-CP cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...