Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(1): 522-532, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712869

RESUMO

BACKGROUND: Radiopharmaceutical therapy (RPT) is an increasingly adopted modality for treating cancer. There is evidence that the optimization of the treatment based on dosimetry can improve outcomes. However, standardization of the clinical dosimetry workflow still represents a major effort. Among the many sources of variability, the impact of using different Dose Voxel Kernels (DVKs) to generate absorbed dose (AD) maps by convolution with the time-integrated activity (TIA) distribution has not been systematically investigated. PURPOSE: This study aims to compare DVKs and assess the differences in the ADs when convolving the same TIA map with different DVKs. METHODS: DVKs of 3 × 3 × 3 mm3 sampling-nine for 177 Lu, nine for 90 Y-were selected from those most used in commercial/free software or presented in prior publications. For each voxel within a 11 × 11 × 11 matrix, the coefficient of variation (CoV) and the percentage difference between maximum and minimum values (% maximum difference) were calculated. The total absorbed dose per decay (SUM), calculated as the sum of all the voxel values in each kernel, was also compared. Publicly available quantitative SPECT images for two patients treated with 177 Lu-DOTATATE and PET images for two patients treated with 90 Y-microspheres were used, including organs at risk (177 Lu: kidneys; 90 Y: liver and healthy liver) and tumors' segmentations. For each patient, the mean AD to the volumes of interest (VOIs) was calculated using the different DVKs, the same TIA map and the same software tool for dose convolution, thereby focusing on the DVK impact. For each VOI, the % maximum difference of the mean AD between maximum and minimum values was computed. RESULTS: The CoV (% maximum difference) in voxels of normalized coordinates [0,0,0], [0,1,0], and [0,1,1] were 5%(21%), 9%(35%), and 10%(46%) for the 177 Lu DVKs. For the case of 90 Y, these values were 2%(9%), 4%(14%), and 4%(16%). The CoV (% maximum difference) for SUM was 9%(33%) for 177 Lu, and 4%(15%) for 90 Y. The variability of the mean tumor and organ AD was up to 19% and 15% in 177 Lu-DOTATATE and 90 Y-microspheres patients, respectively. CONCLUSIONS: This study showed a considerable AD variability due exclusively to the use of different DVKs. A concerted effort by the scientific community would contribute to decrease these discrepancies, strengthening the consistency of AD calculation in RPT.


Assuntos
Radiometria , Compostos Radiofarmacêuticos , Humanos , Fígado , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Software
2.
J Nucl Med ; 64(9): 1471-1477, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442605

RESUMO

In a recent multicenter study, discrepancies between PET/CT-measured activity and vendor-calibrated activity for 90Y glass and resin microspheres were found. In the present work, the origin of these discrepancies was investigated by Monte Carlo (MC) simulations. Methods: Three vial configurations, containing 90Y-chloride, 90Y-labeled glass microspheres, and 90Y-labeled resin microspheres, were modeled with GAMOS, and the electric signal generated in an activity meter was simulated. Energy deposition was scored in the activity meter-active regions and converted into electric current per unit activity. Internal bremsstrahlung (IB) photons, always accompanying ß-decay, were simulated in addition to 90Y decays. The electric current per source activity obtained for 90Y glass and resin microspheres, Iglass and Iresin, was compared in terms of relative percentage difference with that of 90Y-chloride ([Formula: see text] and [Formula: see text]) and each other (δ). The findings of this work were compared with the ones obtained through PET measurements in the multicenter study. Results: With the inclusion of IB photons as primary particles in MC simulations, the [Formula: see text] and [Formula: see text] results were 24.6% ± 3.9% and -15.0% ± 2.2%, respectively, whereas δ was 46.5% ± 1.9%, in very good agreement with the values reported in the multicenter study. Conclusion: The MC simulations performed in this study indicate that the discrepancies recently found between PET/CT-measured activity and vendor-calibrated activity for 90Y glass and resin microspheres can be attributed to differences in the geometry of the respective commercial vials and to the metrologic approach adopted for activity meter calibration with a 90Y-chloride liquid source. Furthermore, IB photons were shown to play a relevant role in determining the electric current in the activity meter.


Assuntos
Cloretos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Método de Monte Carlo , Radioisótopos de Ítrio , Microesferas
3.
Phys Med ; 112: 102624, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354805

RESUMO

PURPOSE: Internal Bremsstrahlung (IB) is a process accompanying ß-decay but neglected in Voxel S-Values (VSVs) calculation. Aims of this work were to calculate, through Monte Carlo (MC) simulation, updated 90Y-VSVs including IB, and to develop an analytical model to evaluate 90Y-VSVs for any voxel size of practical interest. METHODS: GATE (Geant4 Application for Tomographic Emission) was employed for simulating voxelized geometries of soft tissue, with voxels sides l ranging from 2 to 6 mm, in steps of 0.5 mm. The central voxel was set as a homogeneous source of 90Y when IB photons are not modelled. For each l, the VSVs were computed for 90Y decays alone and for 90Y + IB. The analytical model was then built through fitting procedures of the VSVs including IB contribution. RESULTS: Comparing GATE-VSVs with and without IB, differences between + 25% and + 30% were found for distances from the central voxel larger than the maximum ß-range. The analytical model showed an agreement with MC simulations within ± 5% in the central voxel and in the Bremsstrahlung tails, for any l value examined, and relative differences lower than ± 40%, for other distances from the source. CONCLUSIONS: The presented 90Y-VSVs include for the first time the contribution due to IB, thus providing a more accurate set of dosimetric factors for three-dimensional internal dosimetry of 90Y-labelled radiopharmaceuticals and medical devices. Furthermore, the analytical model constitutes an easy and fast alternative approach for 90Y-VSVs estimation for non-standard voxel dimensions.


Assuntos
Radiometria , Compostos Radiofarmacêuticos , Radiometria/métodos , Simulação por Computador , Fótons , Método de Monte Carlo
4.
Phys Med ; 110: 102585, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119675

RESUMO

PURPOSE: In nuclear medicine, Dose Point Kernels (DPKs), representing the energy deposited all around a point isotropic source, are extensively used for dosimetry and are usually obtained by Monte Carlo (MC) simulations. For beta-decaying nuclides, DPK is usually estimated neglecting Internal Bremsstrahlung (IB) emission, a process always accompanying the beta decay and consisting in the emission of photons having a continuous spectral distribution. This work aims to study the significance of IB emission for DPK estimation in the case of 32P and provide DPK values corrected for the IB photon contribution. METHODS: DPK, in terms of the scaled absorbed dose fraction, F(R/X90), was first estimated by GAMOS MC simulation using the standard beta decay spectrum of 32P, Fß(R/X90). Subsequently, an additional source term accounting for IB photons and their spectral distribution was defined and used for a further MC simulation, thus evaluating the contribution of IB emission to DPK values, Fß+IB(R/X90). The relative percent difference, δ, between the DPKs obtained by the two approaches, Fß+IB vs. Fß, was studied as a function of the radial distance, R. RESULTS: As far as the energy deposition is mainly due to the beta particles, IB photons does not significantly contribute to DPK; conversely, for larger R, Fß+IB values are higher by 30-40% than Fß. CONCLUSIONS: The inclusion of IB emission in the MC simulations for DPK estimations is recommended, as well as the use of the DPK values corrected for IB photons, here provided.


Assuntos
Medicina Nuclear , Radiometria , Método de Monte Carlo , Simulação por Computador , Cintilografia
5.
Phys Med Biol ; 68(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36944252

RESUMO

Objective. Simplified calculation approaches and geometries are usually adopted for salivary glands (SGs) dosimetry. Our aims were (i) to compare different dosimetry methods to calculate SGs absorbed doses (ADs) following [18F]-PSMA-1007 injection, and (ii) to assess the AD variation across patients and single SG components. Approach. Five patients with prostate cancer underwent sequential positron-emission tomography/computed tomography (PET/CT) acquisitions of the head and neck, 0.5, 2 and 4 h after [18F]-PSMA-1007 injection. Parotid and submandibular glands were segmented on CT to derive SGs volumes and masses, while PET images were used to derive Time-Integrated Activity Coefficients. Average ADs to single SG components or total SG (tSG) were calculated with the following methods: (i) direct Monte Carlo simulation with GATE/GEANT4 considering radioactivity in the entire PET/CT field-of-view (MC) or in the SGs only (MCsgo); (ii) spherical model (SM) of OLINDA/EXM 2.1, adopting either patient-specific or standard ICRP89 organ masses (SMstd); (iii) ellipsoidal model (EM); (iv) MIRD approach with organS-factors from OLINDA/EXM 2.1 and OpenDose collaboration, with or without contribution from cross irradiation originating outside the SGs. The maximum percent AD difference across SG components (δmax) and across patients (Δmax) were calculated.Main results. Compared to MC, ADs to single SG components were significantly underestimated by all methods (average relative differences ranging between -11.9% and -30.5%).δmaxvalues were never below 25%. The highestδmax(=702%) was obtained with SMstd. Concerning tSG, results within 10% of the MC were obtained only if cross-irradiation from the remainder of the body or from the remainder of the head was accounted for. The Δmaxranged between 58% and 78% across patients.Significance. Simple geometrical models for SG dosimetry considerably underestimated ADs compared to MC, particularly if neglecting cross-irradiation from neighboring regions. Specific masses of single SG components should always be considered given their large intra- and inter-patient variability.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Humanos , Masculino , Oligopeptídeos , Radiometria/métodos , Compostos Radiofarmacêuticos , Glândulas Salivares/diagnóstico por imagem
6.
Med Phys ; 50(3): 1865-1870, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36533673

RESUMO

BACKGROUND: Internal dosimetry has an increasing role in the planning and verification of nuclear medicine therapies with radiopharmaceuticals. Dose Point Kernels (DPKs), quantifying the energy deposition all around a point source, in a homogenous medium, are extensively used for 3D dosimetry and nowadays are mostly evaluated by Monte Carlo (MC) simulation. To our knowledge, DPK for beta emitters is estimated neglecting the continuous photon emission due to the Internal Bremsstrahlung (IB), whose contribution to the absorbed dose can be relevant beyond the maximum range of betas, as evidenced in recent works. PURPOSE: Aim of this study was to investigate and quantify, by means of MC simulations, the contribution of IB photons to DPK calculated for 90 Y and provide the updated 90 Y DPK. METHODS: The overall radiation due to the decay of a 90 Y point source, placed at the centre of concentric water shells of increasing radii from 0.02 cm to 20 cm, was simulated with GAMOS, including the IB source term whose spectral distribution was described by an analytical model. Energy deposition was scored in the shells as a function of the distance from the source, R, and DPK was estimated in terms of the scaled absorbed dose fraction, F(R/X90 ), where X90 is the range within which the beta particles deposit 90% of their energy. RESULTS: A comparison between the two simulated absorbed dose distributions, calculated with or without IB, clearly shows that the latter (incomplete) choice is consistent with the findings of other Authors and systematically underestimates the absorbed dose imparted to the tissue. 90 Y DPK values currently used are underestimated by 20%-34% for R>2X90 . CONCLUSIONS: The revised values provided in this work suggest that the inclusion of IB emission in DPK evaluations is advisable for pure beta emitters.


Assuntos
Medicina Nuclear , Radiometria , Simulação por Computador , Cintilografia , Compostos Radiofarmacêuticos , Método de Monte Carlo
7.
Biomed Phys Eng Express ; 8(6)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36223698

RESUMO

Objective.177Lu is one of the most employed isotopes in targeted radionuclide therapies and theranostics, and 3D internal dosimetry for such procedures has great importance. Voxel S-Values (VSVs) approach is widely used for this purpose, but VSVs are available for a limited number of voxel dimensions. The aim of this work is to develop an analytic model for the calculation of177Lu-VSVs in any cubic voxelized geometry of practical interest.Approach. Monte Carlo (MC) simulations were implemented with the toolkit GAMOS to evaluate VSVs in voxelized geometries of soft tissue from a source of177Lu homogeneously distributed in the central voxel. Nine geometric setups, containing 15 × 15 × 15 cubic voxels of sideslranging from 2 mm to 6 mm, in steps of 0.5 mm, were considered. For eachl, the VSVs computed as a function of the 'normalized radius',Rn= R/l(withR = distance from the center of the source voxel), were fitted with a parametric function. The dependencies of the parameters as a function oflwere then fitted with appropriate functions, in order to implement the model for deducing177Lu-VSVs for anylwithin the aforementioned range.Main results. The MC-derived VSVs were satisfactorily compared with literature data for validation, and the VSVs computed with the analytic model agree with the MC ones within 2% forRn≤ 2 and within 6% forRn> 2.Significance. The proposed model enables the easy and fast calculation, with a simple spreadsheet, of177Lu-VSVs in any cubic voxelized geometry of practical interest, avoiding the necessity of implementingad-hocMC simulations to estimate VSVs for specific voxel dimensions not available in literature data.


Assuntos
Radiometria , Método de Monte Carlo , Radiometria/métodos
8.
Phys Med Biol ; 67(11)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35477100

RESUMO

Objective.The direct Monte Carlo (MC) simulation of radiation transport exploiting morphological and functional tomographic imaging as input data is considered the gold standard for internal dosimetry in nuclear medicine, and it is increasingly used in studies regarding trans-arterial radio-embolization (TARE). However, artefacts affecting the functional scans, such as reconstruction artefacts and motion blurring, decrease the accuracy in defining the radionuclide distribution in the simulations and consequently lead to errors in absorbed dose estimations. In this study, the relevance of such artefacts in patient-specific three-dimensional MC dosimetry was investigated in three cases of90Y TARE.Approach.The pre-therapy99mTc MacroAggregate Albumin (Tc-MAA) SPECTs and CTs of patients were used as input for simulations performed with the GEANT4-based toolkit GATE. Several pre-simulation SPECT-masking techniques were implemented, with the aim of zeroing the decay probability in air, in lungs, or in the whole volume outside the liver.Main results.Increments in absorbed dose up to about +40% with respect to the native-SPECT simulations were found in liver-related volumes of interest (VOIs), depending on the masking procedure adopted. Regarding lungs-related VOIs, decrements in absorbed doses in right lung as high as -90% were retrieved.Significance.These results highlight the relevant influence of SPECT artefacts, if not properly treated, on dosimetric outcomes for90Y TARE cases. Well-designed SPECT-masking techniques appear to be a promising way to correct for such misestimations.


Assuntos
Neoplasias Hepáticas , Radioisótopos de Ítrio , Albuminas , Artefatos , Humanos , Microesferas , Radiometria/métodos , Agregado de Albumina Marcado com Tecnécio Tc 99m , Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Ítrio/uso terapêutico
9.
Phys Med ; 92: 75-85, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34875425

RESUMO

PURPOSE: The aim of this proof-of-concept study is to propose a simplified personalized kidney dosimetry procedure in 177Lu peptide receptor radionuclide therapy (PRRT) for neuroendocrine tumors and metastatic prostate cancer. It relies on a single quantitative SPECT/CT acquisition and multiple radiometric measurements executed with a collimated external probe, properly directed on kidneys. METHODS: We conducted a phantom study involving external count-rate measurements in an abdominal phantom setup filled with activity concentrations of 99mTc, reproducing patient-relevant organ effective half-lives occurring in 177Lu PRRT. GATE Monte Carlo (MC) simulations of the experiment, using 99mTc and 177Lu as sources, were performed. Furthermore, we tested this method via MC on a clinical case of 177Lu-DOTATATE PRRT with SPECT/CT images at three time points (2, 20 and 70 hrs), comparing a simplified kidney dosimetry, employing a single SPECT/CT and probe measurements at three time points, with the complete MC dosimetry. RESULTS: The experimentally estimated kidney half-life with background subtraction applied was compatible within 3% with the expected value. The MC simulations of the phantom study, both with 99mTc and 177Lu, confirmed a similar level of accuracy. Concerning the clinical case, the simplified dosimetric method led to a kidney dose estimation compatible with the complete MC dosimetry within 6%, 12% and 2%, using respectively the SPECT/CT at 2, 20 and 70 hrs. CONCLUSIONS: The proposed simplified procedure provided a satisfactory accuracy and would reduce the imaging required to derive the kidney absorbed dose to a unique quantitative SPECT/CT, with consequent benefits in terms of clinic workflows and patient comfort.

10.
Phys Med ; 90: 158-163, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34662819

RESUMO

Internal Bremsstrahlung (IB) is a continuous electromagnetic radiation accompanying beta decay; however, this process is not considered in radiation protection studies, particularly when estimating exposure from beta-decaying radionuclides. The aims of the present work are: i) to show that neglecting the IB process in Monte Carlo (MC) simulation leads to an underestimation of the energy deposited in a ionization chamber, in the case of a high-energy pure beta emitter such as Yttrium-90 (90Y), and ii) to determine the most reliable choice of source term for 90Y IB to be used in MC simulations. For this radionuclide, commonly employed in nuclear medicine and radiochemistry applications, experimental data acquired with a well ionization chamber have been compared with Monte Carlo (MC) calculations carried out in the GAMOS framework. Simulations that do not include the effect of the IB process, are found to give results underestimating the experimental values by 12-14%. Consequently, two models for the IB energy spectra, previously described by Italiano et al. [1], have been implemented using MC simulation and a good agreement has been achieved with one of them. We therefore conclude that inclusion of IB process in Monte Carlo simulation packages is advisable for a more accurate and complete treatment of electromagnetic interactions.


Assuntos
Fótons , Proteção Radiológica , Simulação por Computador , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...