Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037053

RESUMO

Virus-like particles (VLPs) from bacteriophage MS2 provide a platform to study protein self-assembly and create engineered systems for drug delivery. Here, we aim to understand the impact of intersubunit interface mutations on the local and global structure and function of MS2-based VLPs. In previous work, our lab identified locally supercharged double mutants [T71K/G73R] that concentrate positive charge at capsid pores, enhancing uptake into mammalian cells. To study the effects of particle size on cellular internalization, we combined these double mutants with a single point mutation [S37P] that was previously reported to switch particle geometry from T = 3 to T = 1 icosahedral symmetry. These new variants retained their enhanced cellular uptake activity and could deliver small-molecule drugs with efficacy levels similar to our first-generation capsids. Surprisingly, these engineered triple mutants exhibit increased thermostability and unexpected geometry, producing T = 3 particles instead of the anticipated T = 1 assemblies. Transmission electron microscopy revealed various capsid assembly states, including wild-type (T = 3), T = 1, and rod-like particles, that could be accessed using different combinations of these point mutations. Molecular dynamics experiments recapitulated the structural rationale in silico for the single point mutation [S37P] forming a T = 1 virus-like particle and showed that this assembly state was not favored when combined with mutations that favor rod-like architectures. Through this work, we investigated how interdimer interface dynamics influence VLP size and morphology and how these properties affect particle function in applications such as drug delivery.

2.
ACS Chem Biol ; 17(12): 3367-3378, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36378277

RESUMO

Protein-based nanoparticles are useful models for the study of self-assembly and attractive candidates for drug delivery. Virus-like particles (VLPs) are especially promising platforms for expanding the repertoire of therapeutics that can be delivered effectively as they can deliver many copies of a molecule per particle for each delivery event. However, their use is often limited due to poor uptake of VLPs into mammalian cells. In this study, we use the fitness landscape of the bacteriophage MS2 VLP as a guide to engineer capsid variants with positively charged surface residues to enhance their uptake into mammalian cells. By combining mutations with positive fitness scores that were likely to produce assembled capsids, we identified two key double mutants with internalization efficiencies as much as 67-fold higher than that of wtMS2. Internalization of these variants with positively charged surface residues depends on interactions with cell surface sulfated proteoglycans, and yet, they are biophysically similar to wtMS2 with low cytotoxicity and an overall negative charge. Additionally, the best-performing engineered MS2 capsids can deliver a potent anticancer small-molecule therapeutic with efficacy levels similar to antibody-drug conjugates. Through this work, we were able to establish fitness landscape-based engineering as a successful method for designing VLPs with improved cell penetration. These findings suggest that VLPs with positive surface charge could be useful in improving the delivery of small-molecule- and nucleic acid-based therapeutics.


Assuntos
Capsídeo , Nanopartículas , Animais , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Mamíferos/metabolismo
3.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328635

RESUMO

Calcium is an important early signal in wound healing, yet how these early signals promote regeneration remains unclear. Peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes, catalyze citrullination, a post-translational modification that alters protein function and has been implicated in autoimmune diseases. We generated a mutation in the single zebrafish ancestral pad gene, padi2, that results in a loss of detectable calcium-dependent citrullination. The mutants exhibit impaired resolution of inflammation and regeneration after caudal fin transection. We identified a new subpopulation of cells displaying citrullinated histones within the notochord bead following tissue injury. Citrullination of histones in this region was absent, and wound-induced proliferation was perturbed in Padi2-deficient larvae. Taken together, our results show that Padi2 is required for the citrullination of histones within a group of cells in the notochord bead and for promoting wound-induced proliferation required for efficient regeneration. These findings identify Padi2 as a potential intermediary between early calcium signaling and subsequent tissue regeneration.


Assuntos
Citrulinação , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Regeneração , Cicatrização , Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Histonas/metabolismo , Humanos , Larva/crescimento & desenvolvimento , Proteína-Arginina Desiminase do Tipo 2/deficiência , Proteína-Arginina Desiminase do Tipo 2/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...