Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(7): 10434-10450, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820178

RESUMO

Mueller matrix ellipsometry has been used to precisely characterize quartz waveplates for demanding applications in the semiconductor industry and high precision polarimetry. We have found this experimental technique to be beneficial to use because it enables us to obtain absolute and precise measurement of retardation in a wide spectral range, waveplate orientation, and compound waveplate adjustment. In this paper, the necessity of including the optical activity in the Mueller matrix model and data treatment is demonstrated. Particularly, the optical activity of the quartz influences the adjustment of misalignment between the perpendicularly oriented waveplates of the compound biplate. We demonstrate that omitting the optical activity from the model leads to inaccurate values of the misalignment. In addition, the depolarization effects caused by a finite monochromator bandwidth is included in the model. Incorporation of the optical activity to the Mueller matrix model has required a development of rigorous theory based on appropriate constitutive equations. The generalized Yeh's matrix algebra to bianisotropic media has been used for the calculation of the eigenmodes propagation in chiral materials with reduced symmetry. Based on the applied method, the authors have proposed approximated analytical form of the Mueller matrix representing optically active waveplate and biplate and provided discussion on the analytical and numerical limits of the method.

2.
Opt Express ; 27(21): 30182-30190, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684268

RESUMO

A dual broadband perfect absorber based on a graphene-covered compound silver (Ag) grating structure working in the infrared (0.8-2.1 µm) regime is proposed and investigated numerically. Two distinct absorption peaks approximately 1.0 are achieved by the excitation of magnetic polaritons over a large range of incident angles from 0 to 70 degrees. The physics underlying the structure is also explained by computing interactions of electromagnetic fields with the graphene and the Ag grating. In addition, it has shown that the absorption peaks can be tuned by changing geometric parameters of the structure; however, their spectral shape and absorption remain unchanged. Furthermore, the proposed compound grating with a graphene overlay provides potential applications for infrared absorbing devices.

3.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514442

RESUMO

A self-contained formulation for analyzing electromagnetic scattering by a significant class of planar gratings composed of plasmonic nanorods, which were infinite length along their axes, is presented. The procedure for the lattice sums technique was implemented in a cylindrical harmonic expansion method based on the generalized reflection matrix approach for full-wave scattering analysis of plasmonic gratings. The method provided a high computational efficiency and can be considered as one of the best-suited numerical tools for the optimization of plasmonic sensors and plasmonic guiding devices both having a planar geometry. Although the proposed formalism can be applied to analyze a wide class of plasmonic gratings, three configurations were studied in the manuscript. Firstly, a multilayered grating of silver nanocylinders formed analogously to photonic crystals was considered. In the region far from the resonances of a single plasmonic nanocylinder, the structure showed similar properties compared to conventional photonic crystals. When one or a few nanorods were periodically removed from the original crystal, thus forming a crystal with defects, a new band was formed in the spectral responses because of the resonant tunneling through the defect layers. The rigorous formulation of plasmonic gratings with defects was proposed for the first time. Finally, a plasmonic planar grating of metal-coated dielectric nanorods coupled to the dielectric slab was investigated from the viewpoint of design of a refractive index sensor. Dual-absorption bands attributable to the excitation of the localized surface plasmons were studied, and the near field distributions were given in both absorption bands associated with the resonances on the upper and inner surfaces of a single metal-coated nanocylinder. Resonance in the second absorption band was sensitive to the refractive index of the background medium and could be useful for the design of refractive index sensors. Also analyzed was a phase-matching condition between the evanescent space-harmonics of the plasmonic grating and the guided modes inside the slab, leading to a strong coupling.

4.
Nanomaterials (Basel) ; 9(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470641

RESUMO

Surface plasmon resonance has become a widely accepted optical technique for studying biological and chemical interactions. Among others, detecting small changes in analyte concentration in complex solutions remains challenging, e.g., because of the need of distinguishing the interaction of interest from other effects. In our model study, the resolution ability of plasmonic sensing element was enhanced by two ways. Besides an implementation of metal-insulator-metal (MIM) plasmonic nanostructure, we suggest concatenation with waveguiding substructure to achieve mutual coupling of surface plasmon polariton (SPP) with an optical waveguiding mode. The dependence of coupling conditions on the multilayer parameters was analyzed to obtain optimal field intensity enhancement.

5.
Opt Express ; 26(16): 21242-21248, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119428

RESUMO

This study is aimed at the evaluation of THz gain properties in an optically pumped NH3 gas. NH3 molecules undergo rotational-vibrational excitation by mid-infrared (MIR) optical pumping provided by a MIR quantum cascade laser (QCL) which enables precise tuning to the NH3 infrared transition around 10.3 µm. Pure inversion transitions, (J = 3, K = 3) at 1.073 THz and (J = 4, K = 4) at 1.083 THz were selected. The THz measurements were performed using a THz frequency multiplier chain. The results show line profiles with and without optical pumping at different NH3 pressures, and with different MIR tuning. The highest gain at room temperature under the best conditions obtained during single pass on the (3,3) line was 10.1 dB×m-1 at 26 µbar with a pumping power of 40 mW. The (4,4) line showed lower gain of 6.4 dB×m-1 at 34 µbar with a pumping power of 62 mW. To our knowledge these THz gains are the highest measured in a continuous-wave MIR pumped gas.

6.
Sci Rep ; 7(1): 13117, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030618

RESUMO

We experimentally demonstrate surface plasmon resonance (SPR) in the terahertz range in InSb and InAs. The surface plasmon is excited on the interface between a thin polymer film and the semiconductor using a silicon prism in Otto configuration. The low effective mass of InSb and InAs permits tuning of the SPR by an external magnetic field in the transversal configuration. The data show a good agreement with a model. Strong excitation of the surface plasmon is present in both materials, with a shifting of resonance position by more than 100 GHz for the field of 0.25 T, to both higher and lower energies with opposite orientation of the magnetic field. Applicability of the terahertz SPR sensor is discussed, along with modeled design for the Kretschmann configuration.

7.
Opt Lett ; 42(12): 2338-2341, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614346

RESUMO

A robust plasmonic semiconductor-based Mach-Zehnder interferometer (MZI), which consists of a semiconductor layer with a microslit flanked by two identical microgrooves, is proposed and investigated for the terahertz sensing. The microgrooves reflect the surface plasmon polariton waves toward the microslit, where they interfere with the transmitted terahertz wave. The interference pattern is determined by the permittivities of the sensing material and semiconductor (i.e., temperature dependent), making the structure useful for the refractive index (RI) and temperature detection. A quantitative theoretical model is also developed for performance prediction and validated with a finite element method. The numerical results show that the Mach-Zehnder interferometer sensor possesses an RI sensitivity as high as 140000 nm/RIU (or 0.42 THz/RIU) and a relative intensity sensitivity of 1200%RIU-1. In addition, a temperature sensitivity of 1470 nm/K (or 4.7×10-3 THz/K) is determined. Theoretical calculations indicate that the further improvement in sensing performance is still possible through optimization of the structure. The proposed sensing scheme may pave the way for applications in terahertz sensing and integrated terahertz circuits.

8.
Sci Rep ; 6: 38784, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924939

RESUMO

Seeking better surface plasmon polariton (SPP) waveguides is of critical importance to construct the frequency-agile terahertz (THz) front-end circuits. We propose and investigate here a new class of semiconductor-based slot plasmonic waveguides for subwavelength THz transport. Optimizations of the key geometrical parameters demonstrate its better guiding properties for simultaneous realization of long propagation lengths (up to several millimeters) and ultra-tight mode confinement (~λ2/530) in the THz spectral range. The feasibility of the waveguide for compact THz components is also studied to lay the foundations for its practical implementations. Importantly, the waveguide is compatible with the current complementary metal-oxide-semiconductor (CMOS) fabrication technique. We believe the proposed waveguide configuration could offer a potential for developing a CMOS plasmonic platform and can be designed into various components for future integrated THz circuits (ITCs).

9.
Nanotechnology ; 27(15): 155402, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26938942

RESUMO

Binary gratings with high or low metal filling ratios in a grating region have been demonstrated as successful candidates in enhancing the emittance of emitters for thermophotovoltaics since they could support surface plasmons (SPs), the Rayleigh-Wood anomaly (RWA), or cavity resonance (CR) within their geometries. This work shows that combining a tungsten binary grating with a low and high filling ratio to form a pyramid grating can significantly increase the emittance, which is nearly perfect in the wavelength region from 0.6 to 1.72 µm, while being 0.1 at wavelengths longer than 2.5 µm. Moreover, the emittance spectrum of the hybrid tungsten grating is insensitive to the angle of incidence. The enhancement demonstrated by magnetic field and Poynting vector patterns is due to the interplay between SPs and RWA modes at short wavelengths, and CR at long wavelengths. Furthermore, a combined grating made of nickel is also proposed providing enhanced emittance in a wide angle of incidence.

10.
J R Soc Interface ; 12(102): 20141087, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25551148

RESUMO

Magnetoreception is an enigmatic, poorly understood sensory ability, described mainly on the basis of behavioural studies in animals of diverse taxa. Recently, corpuscles containing superparamagnetic iron-storage protein ferritin were found in the inner ear hair cells of birds, a predominantly single ferritin corpuscle per cell. It was suggested that these corpuscles might represent magnetosomes and function as magnetosensors. Here we determine ferritin low-field paramagnetic susceptibility to estimate its magnetically induced intracellular behaviour. Physical simulations show that ferritin corpuscles cannot be deformed or rotate in weak geomagnetic fields, and thus cannot provide magnetoreception via deformation of the cuticular plate. Furthermore, we reached an alternative hypothesis that ferritin corpuscle in avian ears may function as an intracellular electromagnetic oscillator. Such an oscillator would generate additional cellular electric potential related to normal cell conditions. Though the phenomenon seems to be weak, this effect deserves further analyses.


Assuntos
Aves/fisiologia , Ferritinas/química , Células Ciliadas Auditivas Internas/fisiologia , Magnetossomos/química , Células Receptoras Sensoriais/fisiologia , Animais , Elasticidade , Radiação Eletromagnética , Cavalos , Campos Magnéticos , Magnetismo , Modelos Teóricos , Oscilometria , Baço/metabolismo , Temperatura
11.
Opt Express ; 22 Suppl 1: A68-79, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24922001

RESUMO

A rigorous design using periodic silicon (Si) gratings as absorbers for solar cells in visible and near-infrared regions is numerically presented. The structure consists of a subwavelength Si grating layer on top of an Si substrate. Ranges of grating dimensions are preliminary considered satisfying simple and feasible fabrication techniques with an aspect ratio defined as the ratio of the grating thickness (d) and the grating lamella width (w), with 0 < d/w < 1.0. The subwavelength grating structure (SGS) is assumed to comprise different lamella widths and slits within each period in order to finely tune the grating profile such that the absorptance is significantly enhanced in the whole wavelength region. The results showed that the compound SGS yields an average absorptance of 0.92 which is 1.5 larger than that of the Si plain and conventional grating structures. It is shown that the absorptance spectrum of the proposed SGS is insensitive to the angle of incidence of the incoming light. The absorptance enhancement is also investigated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study show that the proposed method based on nanofabrication techniques provides a simple and promising solution to design solar energy absorbers or other energy harvesting devices.

12.
Opt Express ; 22 Suppl 2: A282-94, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922237

RESUMO

The expectation of perfectly geometric shapes of subwavelength grating (SWG) structures such as smoothness of sidewalls and sharp corners and nonexistence of grating defects is not realistic due to micro/nanofabrication processes. This work numerically investigates optical properties of an optimal solar absorber comprising a single-layered silicon (Si) SWG deposited on a finite Si substrate, with a careful consideration given to effects of various types of its imperfect geometry. The absorptance spectra of the solar absorber with different geometric shapes, namely, the grating with attached nanometer-sized features at the top and bottom of sidewalls and periodic defects within four and ten grating periods are investigated comprehensively. It is found that the grating with attached features at the bottom absorbs more energy than both the one at the top and the perfect grating. In addition, it is shown that the grating with defects in each fourth period exhibits the highest average absorptance (91%) compared with that of the grating having defects in each tenth period (89%), the grating with attached features (89%), and the perfect one (86%). Moreover, the results indicate that the absorptance spectrum of the imperfect structures is insensitive to angles of incidence. Furthermore, the absorptance enhancement is clearly demonstrated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study prove that imperfect geometries of the nanograting structure display a higher absorptance than the perfect one, and provide such a practical guideline for nanofabrication capabilities necessary to be considered by structure designers.

13.
Opt Express ; 22(5): A282-94, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24800284

RESUMO

The expectation of perfectly geometric shapes of subwavelength grating (SWG) structures such as smoothness of sidewalls and sharp corners and nonexistence of grating defects is not realistic due to micro/nanofabrication processes. This work numerically investigates optical properties of an optimal solar absorber comprising a single-layered silicon (Si) SWG deposited on a finite Si substrate, with a careful consideration given to effects of various types of its imperfect geometry. The absorptance spectra of the solar absorber with different geometric shapes, namely, the grating with attached nanometer-sized features at the top and bottom of sidewalls and periodic defects within four and ten grating periods are investigated comprehensively. It is found that the grating with attached features at the bottom absorbs more energy than both the one at the top and the perfect grating. In addition, it is shown that the grating with defects in each fourth period exhibits the highest average absorptance (91%) compared with that of the grating having defects in each tenth period (89%), the grating with attached features (89%), and the perfect one (86%). Moreover, the results indicate that the absorptance spectrum of the imperfect structures is insensitive to angles of incidence. Furthermore, the absorptance enhancement is clearly demonstrated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study prove that imperfect geometries of the nanograting structure display a higher absorptance than the perfect one, and provide such a practical guideline for nanofabrication capabilities necessary to be considered by structure designers.

14.
J Opt Soc Am A Opt Image Sci Vis ; 31(3): 518-23, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24690649

RESUMO

A self-contained coupled-mode theory for the coupled two asymmetric photonic crystal waveguides (PCWs) is presented. The first-order coupled-mode equations are derived under a weak coupling assumption. The coupling coefficients are obtained systematically by a matrix calculus using the modal solutions of each PCW in isolation. The coupled-mode equations are solved for contra-directional coupling between two asymmetric PCWs formed by a hexagonal lattice of circular air holes in a dielectric medium. The power transmission spectra at different output ports of the coupled PCWs are investigated. It is shown that the self-contained coupled-mode analysis is useful to characterize a peculiar feature of the contra-directionally coupled PCWs as a drop filter.

15.
Eur Phys J E Soft Matter ; 36(4): 9853, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23605568

RESUMO

We reanalysed the role of superparamagnetic magnetite clusters observed in a pigeon's upper beak to decide if this matter can be a component of some sort of pigeon magnetometer for Earth orientation. We investigated the mutual interaction of the magnetite clusters induced by the geomagnetic field. The force sensitivity of the hypothetical magnetometer in a pigeon's upper beak was estimated considering the previously presented threshold magnetic sensitivity of pigeons, measured in electrophysiological and behavioural investigations. The typical intercluster magnetic force seems to be 10(-19)N well above the threshold magnetic sensitivity. To strengthen our results, we measured the magnetic susceptibility of superparamagnetic magnetite using a vibrating sample magnetometer. Finally we performed theoretical kinematic analysis of the motion of magnetite clusters in cell plasma. The results indicate that magnetite clusters, constituted by superparamagnetic nanoparticles and observed in a pigeon's upper beak, may not be a component of a measuring system providing the magnetic map.


Assuntos
Bico/fisiologia , Columbidae/anatomia & histologia , Fenômenos Magnéticos , Magnetometria , Modelos Biológicos , Migração Animal/fisiologia , Animais , Bico/metabolismo , Fenômenos Biomecânicos , Columbidae/metabolismo , Columbidae/fisiologia , Óxido Ferroso-Férrico/metabolismo , Orientação/fisiologia
16.
Opt Express ; 20(10): 10646-57, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565690

RESUMO

This paper considers the two-dimensional electromagnetic scattering from periodic array of circular cylinders in which some cylinders are removed, and presents a formulation based on the recursive transition-matrix algorithm (RTMA). The RTMA was originally developed as an accurate approach to the scattering problem of a finite number of cylinders, and an approach to the problem of periodic cylinder array was then developed with the help of the lattice sums technique. This paper introduces the concept of the pseudo-periodic Fourier transform to the RTMA with the lattice sums technique, and proposes a spectral-domain approach to the problem of periodic cylinder array with defects.


Assuntos
Algoritmos , Óptica e Fotônica , Anisotropia , Radiação Eletromagnética , Análise de Fourier , Modelos Estatísticos , Modelos Teóricos , Reprodutibilidade dos Testes , Espalhamento de Radiação
17.
Opt Express ; 20(9): 9978-90, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535090

RESUMO

This paper considers the electromagnetic scattering problem of periodically corrugated surface with local imperfection of structural periodicity, and presents a formulation based on the coordinate transformation method (C-method). The C-method is originally developed to analyze the plane-wave scattering from perfectly periodic structures, and uses the pseudo-periodic property of the fields. The fields in imperfectly periodic structures are not pseudo-periodic and the C-method cannot be directly applied. This paper introduces the pseudo-periodic Fourier transform to convert the fields in imperfectly periodic structures to pseudo-periodic ones, and the C-method becomes then applicable.


Assuntos
Campos Eletromagnéticos , Manufaturas , Modelos Teóricos , Espalhamento de Radiação , Simulação por Computador , Propriedades de Superfície
18.
Opt Express ; 19(25): 25799-811, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273973

RESUMO

This paper proposes a spectral-domain approach to the electromagnetic scattering problem of lamellar grating with defects. The fields in imperfectly periodic structures have continuous spectra in the wavenumber space, and the main problem of the spectral-domain approach is connected to the discretization scheme on the wavenumber. The present approach introduces the pseudo-periodic Fourier transform to consider the discretization scheme in the Brillouin zone. This transformation also makes it possible to apply the conventional grating formulations to the problems of imperfectly periodic structures. The present formulation is based on the rigorous coupled-wave analysis with the help of pseudo-periodic Fourier transform.


Assuntos
Artefatos , Desenho Assistido por Computador , Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Espalhamento de Radiação
19.
Opt Express ; 16(5): 3083-100, 2008 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-18542395

RESUMO

Light wave propagation in third-order nonlinear media with applied external electric field is investigated. Interplay between the nonlinear electro-optic and all-optical effects is examined theoretically. Energy exchange between the orthogonal light polarizations, the cross polarization conversion, results. The assisting external field acts as either the effect-enhancing or functionality-controlling parameter. Various materials such as silica glass, silicon, other bulk and quantum well semiconductors, organic materials, and particle-doped nanostructures are referred to as possible candidates for device implementations. Numerical estimates of achievable parameters in a selected suitable material are discussed.


Assuntos
Desenho Assistido por Computador , Eletrônica/instrumentação , Modelos Teóricos , Óptica e Fotônica/instrumentação , Refratometria/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Refratometria/métodos
20.
Opt Express ; 14(8): 3114-28, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19516453

RESUMO

Anisotropic lamellar sub-wavelength gratings (nanogratings) are described by Effective Medium Approximation (EMA). Analytical formulas for effective medium optical parameters of nanogratings from arbitrary anisotropic materials are derived using approximation of zero-order diffraction mode. The method is based on Rigorous Coupled Wave Analysis (RCWA) combined with proper Fourier factorization method. Good agreement between EMA and the rigorous model is observed, where slight differences are explained by the influence of evanescent higher Fourier harmonics in the nanograting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...