Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345014

RESUMO

HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.

2.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900356

RESUMO

Angiogenesis is the formation of new blood capillaries taking place from preexisting functional vessels, a process that allows cells to cope with shortage of nutrients and low oxygen availability. Angiogenesis may be activated in several pathological diseases, from tumor growth and metastases formation to ischemic and inflammatory diseases. New insights into the mechanisms that regulate angiogenesis have been discovered in the last years, leading to the discovery of new therapeutic opportunities. However, in the case of cancer, their success may be limited by the occurrence of drug resistance, meaning that the road to optimize such treatments is still long. Homeodomain-interacting protein kinase 2 (HIPK2), a multifaceted protein that regulates different molecular pathways, is involved in the negative regulation of cancer growth, and may be considered a "bona fide" oncosuppressor molecule. In this review, we will discuss the emerging link between HIPK2 and angiogenesis and how the control of angiogenesis by HIPK2 impinges in the pathogenesis of several diseases, including cancer.

3.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831402

RESUMO

Fibrosis is an unmet medical problem due to a lack of evident biomarkers to help develop efficient targeted therapies. Fibrosis can affect almost every organ and eventually induce organ failure. Homeodomain-interacting protein kinase 2 (HIPK2) is a protein kinase that controls several molecular pathways involved in cell death and development and it has been extensively studied, mainly in the cancer biology field. Recently, a role for HIPK2 has been highlighted in tissue fibrosis. Thus, HIPK2 regulates several pro-fibrotic pathways such as Wnt/ß-catenin, TGF-ß and Notch involved in renal, pulmonary, liver and cardiac fibrosis. These findings suggest a wider role for HIPK2 in tissue physiopathology and highlight HIPK2 as a promising target for therapeutic purposes in fibrosis. Here, we will summarize the recent studies showing the involvement of HIPK2 as a novel regulator of fibrosis.

4.
Biomolecules ; 12(3)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35327653

RESUMO

Nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) protein is the master regulator of oxidative stress, which is at the basis of various chronic diseases including cancer. Hyperactivation of NRF2 in already established cancers can promote cell proliferation and resistance to therapies, such as in colorectal cancer (CRC), one of the most lethal and prevalent malignancies in industrialized countries with limited patient overall survival due to its escape mechanisms in both chemo- and targeted therapies. In this study, we generated stable NRF2 knockout colon cancer cells (NRF2-Cas9) to investigate the cell response to chemotherapeutic drugs with regard to p53 oncosuppressor, whose inhibition we previously showed to correlate with NRF2 pathway activation. Here, we found that NRF2 activation by sulforaphane (SFN) reduced cisplatin (CDDP)-induced cell death only in NRF2-proficient cells (NRF2-ctr) compared to NRF2-Cas9 cells. Mechanistically, we found that NRF2 activation protected NRF2-ctr cells from the drug-induced DNA damage and the apoptotic function of the unfolded protein response (UPR), in correlation with reduction of p53 activity, effects that were not observed in NRF2-Cas9 cells. Finally, we found that ZnCl2 supplementation rescued the cisplatin cytotoxic effects, as it impaired NRF2 activation, restoring p53 activity. These findings highlight NRF2's key role in neutralizing the cytotoxic effects of chemotherapeutic drugs in correlation with reduced DNA damage and p53 activity. They also suggest that NRF2 inhibition could be a useful strategy for efficient anticancer chemotherapy and support the use of ZnCl2 to inhibit NRF2 pathway in combination therapies.


Assuntos
Antineoplásicos , Neoplasias do Colo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Morte Celular , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Projetos Piloto , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Biomolecules ; 11(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669070

RESUMO

The hyperactivation of nuclear factor erythroid 2 p45-related factor 2 (NRF2), frequently found in many tumor types, can be responsible for cancer resistance to therapies and poor patient prognosis. Curcumin has been shown to activate NRF2 that has cytotprotective or protumorigenic roles according to tumor stage. The present study aimed at investigating whether the zinc-curcumin Zn(II)-curc compound, which we previously showed to display anticancer effects through multiple mechanisms, could induce NRF2 activation and to explore the underlying molecular mechanisms. Biochemical studies showed that Zn(II)-curc treatment increased the NRF2 protein levels along with its targets, heme oxygenase-1 (HO-1) and p62/SQSTM1, while markedly reduced the levels of Keap1 (Kelch-like ECH-associated protein 1), the NRF2 inhibitor, in the cancer cell lines analyzed. The silencing of either NRF2 or p62/SQSTM1 with specific siRNA demonstrated the crosstalk between the two molecules and that the knockdown of either molecule increased the cancer cell sensitivity to Zn(II)-curc-induced cell death. This suggests that the crosstalk between p62/SQSTM1 and NRF2 could be therapeutically exploited to increase cancer patient response to therapies.


Assuntos
Curcumina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Compostos de Zinco/farmacologia , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Curcumina/química , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Interferência de RNA , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Sequestossoma-1/genética , Compostos de Zinco/química
6.
J Exp Clin Cancer Res ; 39(1): 122, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605658

RESUMO

BACKGROUND: Tumor progression and tumor response to anticancer therapies may be affected by activation of oncogenic pathways such as the antioxidant one induced by NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor and the pathways modified by deregulation of oncosuppressor p53. Often, oncogenic pathways may crosstalk between them increasing tumor progression and resistance to anticancer therapies. Therefore, understanding that interplay is critical to improve cancer cell response to therapies. In this study we aimed at evaluating NRF2 and p53 in several cancer cell lines carrying different endogenous p53 status, using a novel curcumin compound since curcumin has been shown to target both NRF2 and p53 and have anti-tumor activity. METHODS: We performed biochemical and molecular studies by using pharmacologic of genetic inhibition of NRF2 to evaluate the effect of curcumin compound in cancer cell lines of different tumor types bearing wild-type (wt) p53, mutant (mut) p53 or p53 null status. RESULTS: We found that the curcumin compound induced a certain degree of cell death in all tested cancer cell lines, independently of the p53 status. At molecular level, the curcumin compound induced NRF2 activation, mutp53 degradation and/or wtp53 activation. Pharmacologic or genetic NRF2 inhibition further increased the curcumin-induced cell death in both mutp53- and wtp53-carrying cancer cell lines while it did not increase cell death in p53 null cells, suggesting a cytoprotective role for NRF2 and a critical role for functional p53 to achieve an efficient cancer cell response to therapy. CONCLUSIONS: These findings underline the prosurvival role of curcumin-induced NRF2 expression in cancer cells even when cells underwent mutp53 downregulation and/or wtp53 activation. Thus, NRF2 inhibition increased cell demise particularly in cancer cells carrying p53 either wild-type or mutant suggesting that p53 is crucial for efficient cancer cell death. These results may represent a paradigm for better understanding the cancer cell response to therapies in order to design more efficient combined anticancer therapies targeting both NRF2 and p53.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/patologia , Rutênio/química , Proteína Supressora de Tumor p53/genética , Antineoplásicos/química , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Curcumina/química , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Células Tumorais Cultivadas
7.
Oncotarget ; 10(45): 4691-4702, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31384396

RESUMO

Resistance to chemotherapy represents a major obstacle to successful treatment. The generation of reactive oxygen species (ROS) has been directly linked to the cytotoxic effects of several antitumor agents, including Adriamycin (ADR), and modulation of the oxidative balance has been implicated in the development and/or regulation of resistance to chemotherapeutic drugs. We recently showed that high glucose (HG) markedly diminished the cancer cell death induced by anticancer agents such as ADR. In the present study we attempted to evaluate the mechanism that impaired the cytotoxic effect of ADR in HG. We found that, in colon cancer cells, HG attenuated ADR-induced ROS production that consequently diminished ADR-induced H2AX phosphorylation and micronuclei (MN) formation. Mechanistically, HG attenuation of ADR-induced ROS production correlated with increased antioxidant response promoted by NRF2 activity. Thus, pharmacologic inhibition of NRF2 pathway by brusatol re-established the ADR cytotoxic effect impaired by HG. Together, the data provide new insights into chemotherapeutic-resistance mechanisms in HG condition dictated by increased NRF2-induced antioxidant response and how they may be overcome in order to restore chemosensitivity and ADR-induced cell death.

8.
Drug Discov Today ; 24(6): 1268-1280, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31051267

RESUMO

The new era of medical innovation is a great opportunity for healthcare; but it poses new challenges for affordability of healthcare systems. To enable timely implementation of value-based clinical care and payment approaches, it is important to look beyond usual timescales to inform decision makers about forthcoming disruptive technologies early. Horizon scanning could represent an efficient tool in support of decision making and rational use of available resources. Different horizon scanning programmes exist in Europe and there is a need for further international cooperation between competent authorities. In relation to this, the present review aims to highlight the importance of early information availability and illustrates the Italian Medicines Agency Horizon Scanning System in the context of the European regulatory network.


Assuntos
Atenção à Saúde/organização & administração , Tomada de Decisões/fisiologia , Humanos , Itália
9.
Front Pharmacol ; 9: 396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731717

RESUMO

One of the most revolutionary technologies in recent years in the field of molecular biology is CRISPR-Cas9. CRISPR technology is a promising tool for gene editing that provides researchers the opportunity to easily alter DNA sequences and modify gene function. Its many potential applications include correcting genetic defects, treating and preventing the spread of diseases. Cystic fibrosis (CF) is one of the most common lethal genetic diseases caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Although CF is an old acquaintance, there is still no effective/resolutive cure. Life expectancy has improved thanks to the combination of various treatments, but it is generally below average. Recently, a significant number of additional key medications have become licensed in Europe for the CF treatment including CFTR modulators. But innovative genomically-guided therapies have begun for CF and it is predictable that this will lead to rapid improvements in CF clinical disease and survival in the next decades. In this way, CRISPR-Cas9 approach may represent a valid tool to repair the CFTR mutation and hopeful results were obtained in tissue and animal models of CF disease.

10.
J Exp Clin Cancer Res ; 36(1): 126, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893313

RESUMO

BACKGROUND: As an important cellular stress sensor phosphoprotein p53 can trigger cell cycle arrest and apoptosis and regulate autophagy. The p53 activity mainly depends on its transactivating function, however, how p53 can select one or another biological outcome is still a matter of profound studies. Our previous findings indicate that switching cancer cells in high glucose (HG) impairs p53 apoptotic function and the transcription of target gene PUMA. METHODS AND RESULTS: Here we report that, in response to drug adriamycin (ADR) in HG, p53 efficiently induced the expression of DRAM (damage-regulated autophagy modulator), a p53 target gene and a stress-induced regulator of autophagy. We found that ADR treatment of cancer cells in HG increased autophagy, as displayed by greater LC3II accumulation and p62 degradation compared to ADR-treated cells in low glucose. The increased autophagy in HG was in part dependent on p53-induced DRAM; indeed DRAM knockdown with specific siRNA reversed the expression of the autophagic markers in HG. A similar outcome was achieved by inhibiting p53 transcriptional activity with pifithrin-α. DRAM knockdown restored the ADR-induced cell death in HG to the levels obtained in low glucose. A similar outcome was achieved by inhibition of autophagy with cloroquine (CQ) or with silencing of autophagy gene ATG5. DRAM knockdown or inhibition of autophagy were both able to re-induce PUMA transcription in response to ADR, underlining a reciprocal interplay between PUMA to DRAM to unbalance p53 apoptotic activity in HG. Xenograft tumors transplanted in normoglycemic mice displayed growth delay after ADR treatment compared to those transplanted in diabetics mice and such different in vivo response correlated with PUMA to DRAM gene expression. CONCLUSIONS: Altogether, these findings suggest that in normal/high glucose condition a mutual unbalance between p53-dependent apoptosis (PUMA) and autophagy (DRAM) gene occurred, modifying the ADR-induced cancer cell death in HG both in vitro and in vivo.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteína 5 Relacionada à Autofagia/genética , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/efeitos dos fármacos , Autofagia/genética , Benzotiazóis/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Proteínas de Membrana , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Interferente Pequeno , Tolueno/administração & dosagem , Tolueno/análogos & derivados
11.
Mater Sci Eng C Mater Biol Appl ; 81: 32-38, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887978

RESUMO

The present communication investigates an application of alginate encapsulation technology to the differentiation of the embryonic cancer stem NTera2 cells (NT2) into dopamine-producing cells. The encapsulation of cells in polymeric beads allows their immune isolation and makes them eligible for transplantation, thus representing a promising biotech tool for the delivery of biologically active compounds to the brain. The polysaccharide alginate is one of the most commonly used material for this procedure since it is well tolerated by various tissues, including the brain. Two different initial cell concentrations (i.e. 0.5∗106/ml and 1.0∗106/ml) were tested, in order to identify which one could better reflect the homogeneous cell distribution into the alginate beads and guarantee a good cell viability at different times of culture. As evidenced, the higher number of cells promoted the formation of clusters resulting in a better interaction among encapsulated cells and the subsequent promotion of mitotic activity. The distribution of alive/dead cells into the alginate beads was verified and followed at different time points through the fluorescein diacetate/propidium iodide (FDA/PI) staining, confirming the presence of living neuronal positive cells, as determined from fluorescence microscopy imaging. The functionality of the encapsulated NT2 cells was confirmed by their dopamine production capability as assessed by UV-Vis spectrophotometric analysis and by liquid chromatography-mass spectrometry (LC-MS). The NT2/microspheres system can be considered a groundbreaking experimental procedure, a functionally active platform, able to produce and release dopamine, and thus potentially exploitable for therapy in Parkinson's disease.


Assuntos
Células-Tronco Neoplásicas , Alginatos , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Microesferas
12.
Oncotarget ; 8(1): 1190-1203, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27901482

RESUMO

Homeodomain interacting protein kinase-2 (HIPK2) is an evolutionary conserved kinase that modulates several key molecular pathways to restrain tumor growth and induce p53-depending apoptotic cell-death in response to anticancer therapies. HIPK2 silencing in cancer cells leads to chemoresistance and cancer progression, in part due to p53 inhibition. Recently, hyperglycemia has been shown to reduce p53 phosphorylation at serine 46 (Ser46), the target residue of HIPK2, thus impairing p53 apoptotic function. Here we asked whether hyperglycemia could, upstream of p53, target HIPK2. We focused on the effect of high glucose (HG) on HIPK2 protein stability and the underlying mechanisms. We found that HG reduced HIPK2 protein levels, therefore impairing HIPK2-induced p53 apoptotic activity. HG-triggered HIPK2 protein downregulation was rescued by both proteasome inhibitor MG132 and by protein phosphatase inhibitors Calyculin A (CL-A) and Okadaic Acid (OA). Looking for the phosphatase involved, we found that protein phosphatase 2A (PP2A) induced HIPK2 degradation, as evidenced by directly activating PP2A with FTY720 or by silencing PP2A with siRNA in HG condition. The effect of PP2A on HIPK2 protein degradation could be in part due to hypoxia-inducible factor-1 (HIF-1) activity which has been previously shown to induce HIPK2 proteasomal degradation through several ubiquitin ligases. Validation analysed performed with HIF-1α dominant negative or with silencing of Siah2 ubiquitin ligase clearly showed rescue of HG-induced HIPK2 degradation. These findings demonstrate how hyperglycemia, through a complex protein cascade, induced HIPK2 downregulation and consequently impaired p53 apoptotic activity, revealing a novel link between diabetes/obesity and tumor resistance to therapies.


Assuntos
Proteínas de Transporte/metabolismo , Hiperglicemia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Glicemia , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Modelos Biológicos , Proteína Fosfatase 2/metabolismo , Proteólise , Proteína Supressora de Tumor p53/metabolismo
13.
J Exp Clin Cancer Res ; 35(1): 136, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27599722

RESUMO

BACKGROUND: Mutations in the p53 oncosuppressor gene are highly frequent in human cancers. These alterations are mainly point mutations in the DNA binding domain of p53 and disable p53 from transactivating target genes devoted to anticancer activity. Mutant p53 proteins are usually more stable than wild-type p53 and may not only impair wild-type p53 activity but also acquire pro-oncogenic functions. Therefore, targeting mutant p53 to clear the hyperstable proteins or change p53 conformation to reactivate wild-type p53 protein functions is a powerful anticancer strategy. Several small molecules have been tested for p53 reactivation in mutant p53-carrying cells while studies exploiting the effect of natural compounds are limited. Capsaicin (CPS) is the major constituent of peppers and show antitumor activity by targeting several molecular pathway, however, its effect on mutant p53 reactivation has not been assessed yet. In this study we aimed at investigating whether mutant p53 could be a new target of capsaicin-induced cell death and the underlying mechanisms. METHODS: p53 levels were analysed by western blot upon capsaicin treatment in the presence of the autophagy inhibitor chloroquine. The mutant p53 reactivation was evaluated by chromatin-immunoprecipitation (ChIP) assay and semi-quantitative RT-PCR analyses of wild-type p53 target genes. The specific wild-type p53 activation was determined by using the inhibitor of p53 transactivation function, pifithrin-α and siRNA for p53. RESULTS: Here, we show that capsaicin induced autophagy that was, at least in part, responsible of mutant p53 protein degradation. Abrogation of mutant p53 by capsaicin restored wild-type p53 activities over mutant p53 functions, contributing to cancer cell death. Similar effects were confirmed in cancer cells bearing tumor-associated p53 mutations and in H1299 (p53 null) with overexpressed p53R175H and p53R273H mutant proteins. CONCLUSION: These findings demonstrate for the first time that capsaicin may reduce mutant p53 levels and reactivate wild-type p53 protein in mutant p53-carrying cells and the p53 reactivation contributes to capsaicin-induced cell death.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Capsaicina/administração & dosagem , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Capsaicina/farmacologia , Capsicum/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutação/efeitos dos fármacos , Neoplasias/genética , Proteólise , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Aging (Albany NY) ; 8(4): 603-19, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27019364

RESUMO

Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.


Assuntos
Apoptose/fisiologia , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Progressão da Doença , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
15.
Neurotoxicology ; 47: 47-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614230

RESUMO

Nickel, a known occupational/environmental hazard, may cross the placenta and reach appreciable concentrations in various fetal organs, including the brain. The aim of this study was to investigate whether nickel interferes with the process of neuronal differentiation. Following a 4 week treatment with retinoic acid (10µM), the human teratocarcinoma-derived NTera2/D1 cell line (NT2 cells) terminally differentiate into neurons which recapitulate many features of human fetal neurons. The continuous exposure of the differentiating NT2 cells to a not cytotoxic nickel concentration (10µM) increased the expression of specific neuronal differentiation markers such as neural cell adhesion molecule (NCAM) and microtubule associated protein 2 (MAP2). Furthermore, nickel exposure increased the expression of hypoxia-inducible-factor-1α (HIF-1α) and induced the activation of the AKT/PKB kinase pathway, as shown by the increase of P(Ser-9)-GSK-3ß, the inactive form of glycogen synthase kinase-3ß (GSK-3ß). Intriguingly, by the end of the fourth week the expression of tyrosine hydroxylase (TH) protein, a marker of dopaminergic neurons, was lower in nickel-treated than in control cultures. Thus, likely by partially mimicking hypoxic conditions, a not-cytotoxic nickel concentration appears to alter the process of neuronal differentiation and hinder the expression of the dopaminergic neuronal phenotype. Taken together, these results suggest that nickel, by altering normal brain development, may increase susceptibility to neuro-psychopathology later in life.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Níquel/toxicidade , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/metabolismo
16.
PLoS One ; 7(11): e48342, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144866

RESUMO

BACKGROUND: Homeodomain-interacting protein kinase 2 (HIPK2) is a multifunctional protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. For instance, HIPK2 knockdown induces upregulation of oncogenic hypoxia-inducible factor-1 (HIF-1) activity leading to a constitutive hypoxic and angiogenic phenotype with increased tumor growth in vivo. HIPK2 inhibition, therefore, releases pathways leading to production of pro-inflammatory molecules such as vascular endothelial growth factor (VEGF) or prostaglandin E2 (PGE(2)). Tumor-produced inflammatory mediators other than promote tumour growth and vascular development may permit evasion of anti-tumour immune responses. Thus, dendritic cells (DCs) dysfunction induced by tumor-produced molecules, may allow tumor cells to escape immunosurveillance. Here we evaluated the molecular mechanism of PGE(2) production after HIPK2 depletion and how to modulate it. METHODOLOGY/PRINCIPAL FINDINGS: We show that HIPK2 knockdown in colon cancer cells resulted in cyclooxygenase-2 (COX-2) upregulation and COX-2-derived PGE(2) generation. At molecular level, COX-2 upregulation depended on HIF-1 activity. We previously reported that zinc treatment inhibits HIF-1 activity. Here, zinc supplementation to HIPK2 depleted cells inhibited HIF-1-induced COX-2 expression and PGE(2)/VEGF production. At translational level, while conditioned media of both siRNA control and HIPK2 depleted cells inhibited DCs maturation, conditioned media of only zinc-treated HIPK2 depleted cells efficiently restored DCs maturation, seen as the expression of co-stimulatory molecules CD80 and CD86, cytokine IL-10 release, and STAT3 phosphorylation. CONCLUSION/SIGNIFICANCE: THESE FINDINGS SHOW THAT: 1) HIPK2 knockdown induced COX-2 upregulation, mostly depending on HIF-1 activity; 2) zinc treatment downregulated HIF-1-induced COX-2 and inhibited PGE(2)/VEGF production; and 3) zinc treatment of HIPK2 depleted cells restored DCs maturation.


Assuntos
Proteínas de Transporte/genética , Diferenciação Celular , Ciclo-Oxigenase 2/metabolismo , Células Dendríticas/fisiologia , Dinoprostona/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Evasão Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Zinco/farmacologia
17.
PLoS One ; 7(5): e36002, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629307

RESUMO

Human Ntera2/cl.D1 (NT2) cells treated with retinoic acid (RA) differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2) or -9 (si-Casp9) was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM), microtubule associated protein-2 (MAP2) and tyrosine hydroxylase (TH) mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved) in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells.


Assuntos
Caspase 2/metabolismo , Caspase 9/metabolismo , Diferenciação Celular/fisiologia , Neurônios/fisiologia , Apoptose/fisiologia , Caspase 3/fisiologia , Linhagem Celular Tumoral , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , RNA Interferente Pequeno , Transfecção , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Neuropharmacology ; 60(7-8): 1301-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21256141

RESUMO

Isolation rearing (IR), a well-established rat model of early chronic psychosocial stress, engenders marked behavioral alterations related to changes of dopamine (DA) neurotransmission in cortical and subcortical brain regions. Stress-induced shifts in γ-aminobutyric acid (GABA)-ergic signaling have been implicated in the dysregulation of DA release. The neurosteroid 3α-hydroxy-5α-pregnan-20-one (allopregnanolone/AP), synthesized from progesterone by the action of the rate-limiting enzyme 5α-reductase (5AR), is a potent positive allosteric modulator of GABA(A) receptor function. Thus, alterations of 5AR activity/expression may impact upon DA neurotransmission. We studied the effects of IR on the 5AR expression/function and extracellular concentrations of DA and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the rat nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC). Immediately after weaning, male rats were subjected to either IR or social rearing (SR) conditions for 5-8 weeks. Compared to SR, IR rats exhibited significantly lower protein expression of 5AR isoforms (1 and 2) in both brain regions and reduced brain, but not plasma, content of AP and allotetrahydrodeoxycorticosterone, the 5α-reduced metabolite of deoxycorticosterone. IR-exposed rats also exhibited higher levels of DA and DOPAC in the NAcc shell, but not in mPFC, when compared to SR rats. The 5AR inhibitor finasteride (FIN, 100 mg/kg, i.p.) enhanced DA and DOPAC content in the NAcc shell of SR, but not IR rats. FIN, however, elicited equivalent increases in DA and DOPAC levels in the mPFC of both groups. These results show that IR induces changes in expression/activity of brain 5AR which, in a brain-region specific manner, may partially underlie the alterations in DA signaling induced by this manipulation. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.


Assuntos
Comportamento Animal/fisiologia , Química Encefálica/efeitos dos fármacos , Colestenona 5 alfa-Redutase/biossíntese , Dopamina/metabolismo , Isolamento Social , Ácido 3,4-Di-Hidroxifenilacético/análise , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Animais , Encéfalo/metabolismo , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/sangue , Desoxicorticosterona/metabolismo , Finasterida/farmacologia , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Pregnanolona/sangue , Pregnanolona/metabolismo , Ratos , Ratos Sprague-Dawley
19.
J Immunol ; 184(4): 2140-7, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20065114

RESUMO

NO-donating aspirins consist of aspirin to which a NO-donating group is covalently linked via a spacer molecule. NCX 4040 and NCX 4016 are positional isomers with respect to the -CH(2)ONO(2) group (para and meta, respectively) on the benzene ring of the spacer. Because positional isomerism is critical for antitumor properties of NO-donating aspirins, we aimed to compare their anti-inflammatory effects with those of aspirin in vitro. Thus, we assessed their impacts on cyclooxygenase-2 activity (by measuring PGE(2) levels), protein expression, and cytokine generation(IL-1beta, IL-18, TNF-alpha, and IL-10) in human whole blood and isolated human monocytes stimulated with LPS. Interestingly, we found that micromolar concentrations of NCX 4040, but not NCX 4016 or aspirin, affected cyclooxygenase-2 expression and cytokine generation. We compared the effects of NCX 4040 with those of NCX 4016 or aspirin on IkappaB-alpha stabilization and proteasome activity in the LPS-stimulated human monocytic cell line THP1. Differently from aspirin and NCX 4016, NCX 4040, at a micromolar concentration range, inhibited IkappaB-alpha degradation. In fact, NCX 4040 caused concentration-dependent accumulation of IkappaB-alpha and its phosphorylated form. This effect was not reversed by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of guanylyl cyclase, thus excluding the contribution of NO-dependent cGMP generation. In contrast, IkappaB-alpha accumulation by NCX 4040 may involve an inhibitory effect on proteasome functions. Indeed, NCX 4040 inhibited 20S proteasome activity when incubated with intact cells but not in the presence of cell lysate supernatants, thus suggesting an indirect inhibitory effect. In conclusion, NCX 4040 is an inhibitor of IkappaB-alpha degradation and proteasome function, and it should be taken into consideration for the development of novel anti-inflammatory and chemopreventive agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/análogos & derivados , Proteínas I-kappa B/antagonistas & inibidores , Proteínas I-kappa B/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitrocompostos/farmacologia , Adulto , Anti-Inflamatórios não Esteroides/química , Aspirina/química , Aspirina/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 1/sangue , Ciclo-Oxigenase 2/sangue , Dinoprostona/biossíntese , Dinoprostona/sangue , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/fisiologia , Inibidor de NF-kappaB alfa , Doadores de Óxido Nítrico/química , Nitrocompostos/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
20.
Exp Neurol ; 217(2): 302-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19306873

RESUMO

Human embryonic teratocarcinoma-derived Ntera2/cl.D1 (NT2) cells recapitulate many features of embryonic neuronal progenitor cells. Upon retinoic acid (RA) treatment they terminally differentiate into post-mitotic neuron-like cells (NT2-N), akin to human fetal neurons, thus representing an in vitro model of human neuron terminal differentiation. Experimental evidence also indicate NT2-N cultures as a potential source for cell transplantation therapy. The neurosteroids progesterone and its metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) promote neurogenesis and show anti-neurodegenerative properties. This study's aim was to assess the neurosteroidogenic competence of NT2 cells during RA-induced neuronal differentiation. Radioimmunoassay measurements revealed progesterone only in NT2-N cultures (4 week RA). Accordingly, progesterone synthesis from (3)H-pregnenolone was absent in NT2 cells and increased during RA exposure, being highest in NT2-N. [(3)H]-pregnenolone metabolism, yielding [(3)H]-progesterone and [(3)H]-5alpha-dihydroprogesterone ([(3)H]-5alpha-DHP), was time-dependent and inhibited by trilostane, a 3beta-hydroxysteroid-dehydrogenase (3beta-HSD) inhibitor. Conversely, (3)H-progesterone metabolism, which yielded [(3)H]-5alpha-DHP > [(3)H]-3beta,5alpha-THP > [(3)H]-3alpha,5alpha-THP, occurred at all time points examined, though showing a nadir in cultures treated with RA for 1 and 2 weeks. The differentiation-dependent increase of progesterone accumulation matched 3beta-HSD type I mRNA expression and 3beta-HSD immunoreactivity, that co-localized with Map2a/b- and GAD67 in NT2-N. Hence, in vitro differentiated human neurons, while retaining progesterone metabolic activity, also become competent in progesterone synthesis. These findings suggest an autocrine/paracrine role of neuronal progesterone, either on its own or through its 5alpha-reduced metabolites, in fetal brain development and allow speculation that NT2-N-produced neurosteroids may contribute to the encouraging results of NT2-N transplants in animal models of neurodegenerative diseases.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Progesterona/biossíntese , Células-Tronco/metabolismo , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Linhagem Celular Tumoral , Glutamato Descarboxilase/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Pregnenolona/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Radioimunoensaio , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...