Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 90(9): 717-725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885660

RESUMO

The search for new active substances against SARS-CoV-2 is still a central challenge after the COVID-19 pandemic. Antiviral agents to complement vaccination are an important pillar in the clinical situation. Selected cannabinoids such as cannabigerol, cannabicyclol, cannabichromene, and cannabicitran from Cannabis sativa and synthetic homologues of cannabigerol and cannabicyclol were evaluated for effects on the cell viability of Vero cells (CC50 of cannabigerol and cannabicyclol 40 resp. 38 µM) and reduced virus entry of vesicular stomatitis pseudotyped viruses with surface-expressed SARS-CoV-2 spike protein at 20 µM. In addition to a reduction of pseudotyped virus entry, a titer reduction assay on Vero cells after preincubation of Wuhan SARS-CoV-2 significantly confirmed antiviral activity. Investigations on the molecular targets addressed by cannabigerol and cannabicyclol indicated that both compounds are inhibitors of SARS-CoV-2 spike protein-mediated membrane fusion, as could be shown by a virus-free reporter fusion inhibition assay (EC50 for cannabigerol 5.5 µM and for cannabicyclol 10.8 µM) and by monitoring syncytia formation in Vero reporter cells. Selectivity indices were calculated as 7.4 for cannabigerol and 3.5 for cannabicyclol. Systematic semisynthetic alterations of cannabigerol and cannabicyclol indicated that the side chains of both compounds do not contribute to the observed anti-membrane fusion activity.


Assuntos
Antivirais , Canabinoides , SARS-CoV-2 , Internalização do Vírus , Chlorocebus aethiops , Células Vero , Animais , SARS-CoV-2/efeitos dos fármacos , Canabinoides/farmacologia , Antivirais/farmacologia , Internalização do Vírus/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , Sobrevivência Celular/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Cannabis/química
2.
Antibiotics (Basel) ; 12(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36830230

RESUMO

Hyperpigmentation frequently occurs after inflammation from bacterial infection. Thus, the inhibition activity of tyrosinase, the key enzyme to catalyze the melanogenesis and/or inhibition of bacterial infection, could decrease melanin production. Hence, the potential inhibitors could be discovered from natural products. ω-Hydroxymoracin C (1), a new compound with two other 2-arylbenzofurans, i.e., moracin M (2) and moracin C (3), and two stilbenes, i.e., 3, 4, 3', 5'-tetrahydroxybibenzyl (4) and piceatannol (5), were isolated from the wood of Streblus taxoides. Compound 4 showed a strong inhibitory activity against tyrosinase enzyme with an IC50 value of 35.65 µg/mL, followed by compound 2 with an IC50 value of 47.34 µg/mL. Conversely, compound 1, 3 and 5 showed moderate activity, with IC50 values of 109.64, 128.67 and 149.73 µg/mL, respectively. Moreover, compound 1 and 3 showed an antibacterial effect against some Staphylococcus spp. Thus, the isolated compounds exhibited potential antityrosine and antibacterial effects. Additionally, an in silico study was performed in order to predict theoretical molecular interactions between the obtained metabolites from S. taxoides and tyrosinase as an extended in vitro enzyme binding assay experiment.

3.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770624

RESUMO

Thai rejuvenating remedies are mixed herbal formulas promoting longevity. Due to the complexity, the biological activities of these remedies are minimal. Therefore, in this study, the authors evaluated the anti-pigmentation effect at the molecular level of the selected Thai rejuvenating remedy to fulfill the knowledge gap. First, the authors found that the selected remedy showed promising activity against the tyrosinase enzyme with an IC50 value of 9.41 µg/mL. In the comparison, kojic acid (positive control) exhibited an IC50 value of 3.92 µg/mL against the same enzyme. Later, the authors identified glabridin as a bioactive molecule against tyrosinase with an IC50 value of 0.08 µg/mL. However, ethyl p-methoxycinnamate was the most abundant metabolite found in the remedy. The authors also found that the selected remedy and glabridin reduced the melanin content in the cell-based assay (B16F1) but not in the zebrafish larvae experiment. Finally, the authors conducted a computational investigation through molecular docking proposing a theoretical molecular interplay between glabridin, ethyl p-methoxycinnamate, and target proteins (tyrosinase and melanocortin-1 receptor, MC1R). Hence, in this study, the authors reported the molecular anti-pigmentation mechanism of the selected Thai rejuvenating remedy for the first time by combining the results from in silico, in vitro, and in vivo experiments.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Animais , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Peixe-Zebra/metabolismo
4.
Foods ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201083

RESUMO

Hemp (Cannabis sativa L.) is a plant widely used by humans for textiles, food, and medicine. Thus, this study aimed to characterize the chemical profiling of 12 hemp seed extracts from Thai (HS-TH) and foreign (HS-FS) samples using gas chromatography-mass spectrometry (GC-MS). Their antibacterial activity and α-glucosidase inhibitory activity were assayed. Linoleic acid (17.63-86.53%) was a major component presented in Thai hemp seed extracts, while α,ß-gluco-octonic acid lactone (30.39%), clionasterol (13.42-29.07%), and glyceryl-linoleate (15.12%) were detected as the main metabolites found in foreign hemp seed extracts. Furthermore, eight extracts from both Thai and foreign hemp seed exhibited antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, Methicillin-resistant Staphylococcus aureus, and Cutibacterium acnes, with MIC values ranging from 128 to 2048 µg/mL. Interestingly, the ethanol extract of Thai hemp seed (HS-TH-2-M-E) showed superior α-glucosidase inhibition (IC50 value of 33.27 ug/mL) over foreign species. The combination between Thai hemp species (HS-TH-2-M-E) and acarbose showed a synergistic effect against α-glucosidase. Furthermore, the docking investigation revealed that fatty acids had a greater impact on α-glucosidase than fatty acid esters and cannabinoids. The computational simulation predicts a potential allosteric binding pocket of guanosine on glucosidase and is the first description of gluco-octonic acid's anti-glucosidase activity in silico. The findings concluded that Thai hemp seed could be used as a resource for supplemental drugs or dietary therapy for diabetes mellitus.

5.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500280

RESUMO

Solanum stramonifolium Jacq. (Solanaceae) is widely found in South East Asia. In Thailand, it is used as vegetable and as a component in traditional recipes. The results of an alpha-glucosidase inhibitory screening test found that the crude extract of S. stramonifolium inflorescence exhibited the potential effect with IC50 81.27 µg/mL. The separation was performed by the increasing solvent polarity method. The ethyl acetate, ethanol, and water extracts of S. stramonifolium inflorescence showed the synergistic effect together with acarbose standard. The phytochemical investigation of these extracts was conducted by chromatographic and spectroscopic techniques. Six flavonoid compounds, myricetin 3, 4', 5', 7-tetramethyl ether (1), combretol (2), kaempferol (3), kaempferol 7-O-glucopyranoside (4), 5-hydroxy 3-7-4'-5'-tetramethoxyflavone-3'-O-glucopyranoside (5), and a mixture (6) of isorhamnetin 3-O-glucopyranoside (6a) and astragalin (6b) were isolated. This discovery is the first report of flavonoid-glycoside 5. Moreover, the selected flavonoids, kaempferol and astragalin, were representatives to explore the mechanism of action. Both of them performed mixed-type inhibition. The molecular docking gave a better understanding of flavonoid compounds' ability to inhibit the alpha-glucosidase enzyme.


Assuntos
Solanum , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Flavonoides/química
6.
Molecules ; 27(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163903

RESUMO

Neuropeltis racemosa Wall. (Convolvulaceae) is wildly distributed in Asia. Its stem is used as the component in traditional Thai recipes for treatments of muscle rigidity, skin disorder, dysentery, and hypoglycemia. However, the chemical constituents and biological activities of N. racemosa have not been reported. From a screening assay, N. racemosa stem crude extract showed the potent effect on alpha-glucosidase inhibition at 2 mg/mL as 96.09%. The bioassay-guiding isolation led to 5 compounds that were identified by spectroscopic techniques as scopoletin (1), syringic acid (2), methyl 3-methyl-2-butenoate (3), N-trans-feruloyltyramine (4), and N-trans- coumaroyltyramine (5). Compounds 1, 4, and 5 exhibited an IC50 of 110.97, 29.87, and 0.92 µg/mL, respectively, while the IC50 of positive standard, acarbose was 272.72 µg/mL. Kinetic study showed that compound 1 performed as the mixed-type inhibition mechanism, whereas compounds 4 and 5 displayed the uncompetitive inhibition mechanism. The docking study provided the molecular understanding of isolated aromatic compounds (1, 2, 4 and 5) to alpha-glucosidase. Hence, this study would be the first report of isolated compounds and their anti-alpha-glucosidase activity with the mechanism of action from N. racemosa. Thus, these active compounds will be further studied to be the lead compounds among natural antidiabetic drugs.


Assuntos
Convolvulaceae , Plantas Medicinais , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Plantas Medicinais/química , Tailândia , alfa-Glucosidases/química
7.
Plants (Basel) ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161302

RESUMO

Even though maytansine was first discovered from Celastraceae plants, it was later proven to be an endophytic bacterial metabolite. However, a pure bacterial culture cannot synthesize maytansine. Therefore, an exclusive interaction between plant and endophytes is required for maytansine production. Unfortunately, our understanding of plant-endophyte interaction is minimal, and critical questions remain. For example: how do endophytes synthesize maytansine inside their plant host, and what is the impact of maytansine production in plant secondary metabolites? Our study aimed to address these questions. We selected Gymnosporia heterophylla as our model and used amino-hydroxybenzoic acid (AHBA) synthase and halogenase genes as biomarkers, as these two genes respond to biosynthesize maytansine. As a result, we found a consortium of seven endophytes involved in maytansine production in G. heterophylla, based on genome mining and gene expression experiments. Subsequently, we evaluated the friedelin synthase (FRS) gene's expression level in response to biosynthesized 20-hydroxymaytenin in the plant. We found that the FRS expression level was elevated and linked with the expression of the maytansine biosynthetic genes. Thus, we achieved our goals and provided new evidence on endophyte-endophyte and plant-endophyte interactions, focusing on maytansine production and its impact on plant metabolite biosynthesis in G. heterophylla.

8.
Planta Med ; 88(12): 1047-1059, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34638139

RESUMO

THC, CBD, and CBN were reported as promising candidates against SARS-CoV2 infection, but the mechanism of action of these three cannabinoids is not understood. This study aims to determine the mechanism of action of THC, CBD, and CBN by selecting two essential targets that directly affect the coronavirus infections as viral main proteases and human angiotensin-converting enzyme2. Tested THC and CBD presented a dual-action action against both selected targets. Only CBD acted as a potent viral main protease inhibitor at the IC50 value of 1.86 ± 0.04 µM and exhibited only moderate activity against human angiotensin-converting enzyme2 at the IC50 value of 14.65 ± 0.47 µM. THC acted as a moderate inhibitor against both viral main protease and human angiotensin-converting enzymes2 at the IC50 value of 16.23 ± 1.71 µM and 11.47 ± 3.60 µM, respectively. Here, we discuss cannabinoid-associated antiviral activity mechanisms based on in silico docking studies and in vitro receptor binding studies.


Assuntos
Tratamento Farmacológico da COVID-19 , Canabidiol , Canabinoides , Enzima de Conversão de Angiotensina 2 , Angiotensinas , Antivirais/farmacologia , Canabidiol/metabolismo , Canabinoides/metabolismo , Canabinol/metabolismo , Canabinol/farmacologia , Mecanismos de Defesa , Dronabinol/metabolismo , Dronabinol/farmacologia , Humanos , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , RNA Viral , SARS-CoV-2
9.
iScience ; 24(12): 103391, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34841230

RESUMO

Cannabis sativa L. has been one of the oldest medicinal plants cultivated for 10,000 years for several agricultural and industrial applications. However, the plant became controversial owing to some psychoactive components that have adverse effects on human health. In this review, we analyzed the trends in cannabis research for the past two centuries. We discussed the historical transitions of cannabis from the category of herbal medicine to an illicit drug and back to a medicinal product post-legalization. In addition, we address the new-age application of immuno-suppressive and anti-inflammatory extracts for the treatment of COVID-19 inflammation. We further address the influence of the legal aspects of cannabis cultivation for medicinal, pharmaceutical, and biotechnological research. We reviewed the up-to-date cannabis genomic resources and advanced technologies for their potential application in genomic-based cannabis improvement. Overall, this review discusses the diverse aspects of cannabis research developments ranging from traditional use as herbal medicine to the latest potential in COVID-19, legal practices with updated patent status, and current state of art genetic and genomic tools reshaping cannabis biotechnology in modern age agriculture and pharmaceutical industry.

10.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641514

RESUMO

The aim of this research was to establish the constituents of Bauhinia pulla as anti-diabetic agents. A phytochemistry analysis was conducted by chromatographic and spectroscopic techniques. The alpha-glucosidase inhibitory assay screening resulted in the isolation of eight known compounds of quercetin, quercitrin, luteolin, 5-deoxyluteolin, 4-methyl ether isoliquiritigenin, 3,2',4'-trihydroxy-4-methoxychalcone, stigmasterol and ß-sitosterol. Ethanol leaf extracts showed potential effects, which led to a strong inhibitory activity of isolated quercetin at 138.95 µg/mL and 5.41 µg/mL of IC50, respectively. The docking confirmed that flavonoids and chalcones had the same potential binding sites and responsibilities for their activity. This study was the first report of Bauhinia pulla chemical constituents and its alpha-glucosidase inhibition.


Assuntos
Bauhinia/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Flavonoides/química , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química
11.
Plants (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451538

RESUMO

The metabolite 20-Hydroxymaytenin (20-HM) is a member of the quinone-methide pentacyclic triterpenoids (QMTs) group. This metabolite group is present only in Celastraceae plants, and it has shown various biological activities from antioxidant to anticancer properties. However, most QMTs metabolites including 20-HM cannot be synthesized in a laboratory. Therefore, we optimized a plant tissue culture protocol and examined the potential of Gymnosporia heterophylla (synonym. Maytenus heterophylla) to produce 20-HM in an in vitro experiment. For the first time, we reported the optimum callus induction medium with a high percentage success rate of 82% from the combination of 1 mg/L indole-3-butyric acid and 5 mg/L naphthalene acetic acid. Later, our cell suspension culture cultivated in the optimum medium provided approximately 0.35 mg/g fresh weight of 20-HM. This concentration is roughly 87.5 times higher than a concentration of 20-HM presenting in Elaeodendron croceum (Celastraceae) leaves. In addition, we also found that 20-HM presented in a cultivation medium, suggesting that G. heterophylla cells secreted 20-HM as an exudate in our experiment. Noticeably, 20-HM was missing when Penicillium cf. olsonii occurred in the medium. These findings hint at an antifungal property of 20-HM.

12.
Pak J Pharm Sci ; 28(5): 1679-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26408887

RESUMO

Nineteen plants from Fabaceae family, which were used in Thai traditional medicine for treatment of diabetes, were determined of α-glucosidase inhibitory activity via enzymatic reaction. In this reaction, α-glucosidase was used as enzyme, which, reacted with the substrate, p-nitrophenol-D-glucopyranoside (pNPG). After that the product, p-nitro phenol (pNP) will be occurred and observed the yellow colour at 405 nm. In this study, acarbose was used as positive standard which, inhibited this enzyme with IC50 as 331 ± 4.73 µg/ml. Caesalpinia pulcherrima leaves showed the highest activity with IC50 as 436.97 ± 9.44 µg/ml. Furthermore, Bauhinia malabarica leaves presented moderately activity with IC50 as 745.08 ± 11.15 µg/ml. However, the other plants showed mild to none activity of α-glucosidase inhibition. Accordingly, this study can support anti-diabetes of these plants in traditional medicine and it will be the database of the biological activity of Fabaceae plant.


Assuntos
Fabaceae , Inibidores de Glicosídeo Hidrolases/farmacologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...