Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 102: 101898, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33875181

RESUMO

The Benguela Upwelling System (BUS) is subject to a high incidence of HABs. Of the major shellfish poisoning syndromes associated with HABs, Paralytic and Diarrhetic Shellfish Poisoning (PSP and DSP) pose the greatest concern, but as documented herein there are several other HAB organisms that are also present. Blooms of Alexandrium catenella have been recognised as the typical cause of PSP since 1948. In addition to the risk posed to human health A. catenella has also been the cause of large shellfish and bird mortalities. An additional risk of PSP is provided by Alexandrium minutum first detected in Cape Town harbour in 2003. DSP was identified on the South African coast for the first time in 1991. Although several Dinophysis spp. known to cause DSP have been recognized as a component of the plankton of the region, it is accepted that DSP is usually attributed to D. acuminata or D. fortii. In the southern Benguela both Pseudo-nitzschia australis and Pseudo-nitzschia multiseries have been identified and shown to produce domoic acid. Multiple Pseudo-nitzschia spp. have been identified in the northern Benguela with the potentially toxigenic Pseudo-nitzschia pungens and P. australis dominant inshore. The yessotoxin (YTX) producing dinoflagellates Gonyaulax spinifera, Lingulodinium polyedrum and Protoceratium reticulatum are all known to form blooms and YTXs have been the cause of massive mortalities of farmed abalone. Prominent fish-killing blooms include Karlodinium veneficum in the northern Benguela and Karenia cristata in the southern Benguela. Shellfish farms in an embayment of the southern Benguela have suffered reduced growth rates due to the ecosystem disruptive blooms of Aureococcus anophagefferens. High biomass dinoflagellate blooms often attributed to Tripos and Prorocentrum spp. characterise the entire region and major mortalities of marine life are regularly attributed to their decay and the subsequent development of anoxic conditions.


Assuntos
Diatomáceas , Dinoflagellida , Animais , Ecossistema , Proliferação Nociva de Algas , África do Sul
2.
Artigo em Inglês | MEDLINE | ID: mdl-37359131

RESUMO

Global trends in the occurrence, toxicity and risk posed by harmful algal blooms to natural systems, human health and coastal economies are poorly constrained, but are widely thought to be increasing due to climate change and nutrient pollution. Here, we conduct a statistical analysis on a global dataset extracted from the Harmful Algae Event Database and Ocean Biodiversity Information System for the period 1985-2018 to investigate temporal trends in the frequency and distribution of marine harmful algal blooms. We find no uniform global trend in the number of harmful algal events and their distribution over time, once data were adjusted for regional variations in monitoring effort. Varying and contrasting regional trends were driven by differences in bloom species, type and emergent impacts. Our findings suggest that intensified monitoring efforts associated with increased aquaculture production are responsible for the perceived increase in harmful algae events and that there is no empirical support for broad statements regarding increasing global trends. Instead, trends need to be considered regionally and at the species level.

3.
Harmful Algae ; 81: 30-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30638496

RESUMO

A large dinoflagellate bloom in Walker Bay (South Africa) in January 2017 impacted 3 land-based abalone farms resulting in the death of several million animals. Satellite-derived images of Chl-a from the Ocean and Land Colour Imager (OLCI) on board the European Space Agency Sentinel-3 A showed bloom initiation in late December 2016 and dispersal in mid-February 2017. The bloom was dominated by two dinoflagellate species identified by light microscopy as Gonyaulax spinifera (Claparède & Lachmann) Diesing, 1866 and Lingulodinium polyedrum (Stein) Dodge, 1989. These morphologically based identifications were confirmed by phylogenetic analysis using partial sequences of the large subunit rDNA of both dinoflagellates. The appearance of yessotoxins (YTX) in abalone clearly coincided with increases in dinoflagellate concentrations. Yessotoxins in both the plankton and abalone were dominated by the two analogues homo-YTX and 45-hydroxy-YTX. The absence of toxins in a clonal culture of L. polyedrum implicated G. spinifera as the likely source of YTX. Toxin concentrations were found to be highest in the gills which showed the most significant pathology, including severe, generalized disruption of the gill epithelium characterized by degeneration and necrosis of epithelial cells accompanied by a modest inflammatory response. Some farms undertook pre-emptive or emergency harvesting to reduce financial losses.


Assuntos
Dinoflagellida , Oxocinas , Animais , Fazendas , Venenos de Moluscos , Filogenia
4.
Science ; 359(6371)2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29301986

RESUMO

Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems.


Assuntos
Monitoramento Ambiental , Aquecimento Global , Oxigênio/análise , Água do Mar/química , Adaptação Biológica , Animais , Organismos Aquáticos , Conservação dos Recursos Naturais , Pesqueiros , Oceanos e Mares
5.
Mar Drugs ; 6(2): 308-48, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18728730

RESUMO

Paralytic shellfish poisoning (PSP), due to saxitoxin and related compounds, typically results from the consumption of filter-feeding molluscan shellfish that concentrate toxins from marine dinoflagellates. In addition to these microalgal sources, saxitoxin and related compounds, referred to in this review as STXs, are also produced in freshwater cyanobacteria and have been associated with calcareous red macroalgae. STXs are transferred and bioaccumulate throughout aquatic food webs, and can be vectored to terrestrial biota, including humans. Fisheries closures and human intoxications due to STXs have been documented in several non-traditional (i.e. non-filter-feeding) vectors. These include, but are not limited to, marine gastropods, both carnivorous and grazing, crustacea, and fish that acquire STXs through toxin transfer. Often due to spatial, temporal, or a species disconnection from the primary source of STXs (bloom forming dinoflagellates), monitoring and management of such non-traditional PSP vectors has been challenging. A brief literature review is provided for filter feeding (traditional) and non-filter feeding (non-traditional) vectors of STXs with specific reference to human effects. We include several case studies pertaining to management actions to prevent PSP, as well as food poisoning incidents from STX(s) accumulation in non-traditional PSP vectors.


Assuntos
Cadeia Alimentar , Paralisia/etiologia , Saxitoxina/intoxicação , Intoxicação por Frutos do Mar , Animais , Eutrofização , Humanos , Saúde Pública , Alimentos Marinhos/intoxicação
6.
Microsc Res Tech ; 59(2): 128-30, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12373723

RESUMO

Light microscopy (LM) is routinely used to investigate delicate (unarmoured and lightly armoured) "gymnodinioid" dinoflagellate species but at this level of resolution, morphological features such as apical grooves, apical pores, thin thecal plates, and scales are often difficult to observe, thereby necessitating the use of scanning electron microscopy (SEM). Good results were obtained when harvested cells were fixed with osmium tetroxide (OsO(4)) as the primary fixative, adhered with poly-L-lysine to round glass coverslips, dehydrated in an ethanol series, and dried with hexamethyldisilazane (HMDS). Poly-L-lysine has in the past effectively been used to adhere biological material such as human red blood cells, mouse leukemic cells, and marine dinoflagellates to glass coverslips. HMDS has been used to substitute critical point drying (CPD) to dry soft insect tissues, rat hepatic endothelial cells, and the cilia of rat trachea. By combining and fine-tuning these two protocols in SEM studies of delicate "gymnodinioid" dinoflagellates, it is possible to overcome cell distortion such as shrinking and collapsing that result from centrifuging, filtering, and CPD. The combination of poly-L-lysine and HMDS not only produces good results but also requires limited expertise and equipment, is inexpensive, and is less time-consuming.


Assuntos
Dinoflagellida/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Animais , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...