Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(11): 115003, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33285533

RESUMO

The evolution of surface roughness in binary mixtures of the two molecular organic semiconductors (OSCs) diindenoperylene (DIP) as electron-donor and 1, 3, 4, 5, 7, 8-hexafluoro-tetracyano naphthoquinodimethane (F6TCNNQ) as electron-acceptor is studied. We co-deposit DIP and F6TCNNQ in vacuum with varying relative molar content while keeping a molar excess of DIP in order to produce phase-heterogeneous mixtures. The excess DIP phase segregates in pristine crystallites, whereas the remaining mixed phase is constituted by DIP:F6TCNNQ co-crystallites. We calculate the surface roughness as function of film thickness by modelling x-ray reflectivity data acquired in situ and in real-time during film growth. To model the experimental data, two distinct approaches, namely the kinematic approximation and the Parratt formalism, are applied. A comparative study of surface roughness evolution as function of DIP:F6TCNNQ mixing ratio is carried out implementing the Trofimov growth model within the kinematic approximation. Depending on the thickness regime, mixing ratio-specific trends are identified and discussed. To explain them, a growth mechanism for binary heterogeneous mixtures of strongly interacting OSCs is proposed.

2.
Rev Sci Instrum ; 90(3): 035102, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927801

RESUMO

We demonstrate the use of a 3D printed radial collimator in X-ray powder diffraction and surface sensitive grazing incidence X-ray diffraction. We find a significant improvement in the overall signal to background ratio of up to 100 and a suppression of more than a factor 3 · 105 for undesirable Bragg reflections generated by the X-ray "transparent" windows of the sample environment. The background reduction and the removal of the high intensity signals from the windows, which limit the detector's dynamic range, enable significantly higher sensitivity in experiments within sample environments such as vacuum chambers and gas- or liquid-cells. Details of the additively manufactured steel collimator geometry, alignment strategies using X-ray fluorescence, and data analysis are also briefly discussed. The flexibility and affordability of 3D prints enable designs optimized for specific detectors and sample environments, without compromising the degrees of freedom of the diffractometer.

3.
J Phys Condens Matter ; 29(43): 434001, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28809755

RESUMO

Functional materials that exhibit photoinduced structural phase transitions are highly interesting for applications in optomechanics and mechanochemistry. It is, however, still not fully understood how photochemical reactions, which are often accompanied by molecular motion, proceed in confined and crystalline environments. Here we show that thin films of azobenzene trimers exhibit high structural order and determine the crystallographic unit cell. We demonstrate that thin film can be switched partially reversibly between a crystalline and an amorphous phase. The time constant of the photoinduced amorphisation as measured with real-time x-ray diffraction ([Formula: see text]220 s) lies between the two time constants (120 s and 2870 s) of the ensemble photoisomerisation processes that are measured via optical spectroscopy. Our observation of a photoinduced shrinking of the crystalline domains indicates a cascading process, in which photoisomerisation starts at the surface of the thin film and propagates deeper into the crystalline layer by introducing disorder and generating free volume. This finding is important for the rapidly evolving research field of photoresponsive thin films and smart crystalline materials in general.

4.
Phys Chem Chem Phys ; 16(47): 26084-93, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25361069

RESUMO

We report on the impact of partial fluorination of para-sexiphenyl (6P) on the growth mode when deposited on the non-polar ZnO(101̄0) surface. The evolution of the thin film structure and morphology is monitored by in situ atomic force microscopy and in situ real-time X-ray scattering. Both 6P and its symmetrical, terminally fluorinated derivative (6P-F4) grow in a highly crystalline mode, however, with a distinctly different morphology. While 6P films are characterised by the formation of two different phases with three-dimensional nanocrystallites and consequently a rather rough surface morphology, layer-by-layer growth and phase purity in case of 6P-F4 prevails leading to smooth terraced thin films. We relate the different growth behaviour to specifics of the thin film structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...