Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 240(1): 157-169, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36520197

RESUMO

RATIONALE: Major depressive disorder (MDD) is one of the most diagnosed mental disorders. Despite this, its pathophysiology remains poorly understood. In this context, basic research aims to unravel the pathophysiological mechanisms of MDD as well as investigate new targets and substances with therapeutic potential. Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane channel considered a sensor for inflammation and oxidative stress. Importantly, both inflammation and oxidative stress have been suggested as participants in the pathophysiology of MDD. However, the potential participation of TRPA1 in depressive disorder remains poorly investigated. OBJECTIVE: To investigate the involvement of the TRPA1 channel in the behavioral changes induced by chronic corticosterone administration (CCA) in male mice. METHODS: Swiss male mice were exposed to 21 days of CCA protocol and then treated with HC-030031 or A-967079, TRPA1 antagonists. Behavioral tests, analyzes of oxidative parameters and TRPA1 immunocontent were performed in the prefrontal cortex (PFC) and hippocampus (HIP). RESULTS: CCA induced despair-like behavior in mice accompanied by an increase in the levels of hydrogen peroxide (H2O2), a TRPA1 agonist, which was reversed by TRPA1 antagonists and ketamine (positive control). In addition, CCA protocol reduced the immunocontent of this channel in the HIP and showed a tendency to increase the TRPA1 protein expression in the PFC. CONCLUSION: Our work suggests that TRPA1 channel appears crucial to mediate the behavioral impairment induced by CCA in male Swiss mice.


Assuntos
Corticosterona , Transtorno Depressivo Maior , Masculino , Animais , Camundongos , Canal de Cátion TRPA1/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação
2.
Behav Brain Res ; 425: 113815, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218793

RESUMO

Major depression is a leading contributor to the global burden of disease. This is mainly related to the disorder chronic and recurrent nature, and to high rates of refractoriness to treatment. Limited efficacy with currently available antidepressants highlights the need for more effective options for treating drug-resistant patients and emphasizes the importance of developing specific preclinical models for treatment-resistant populations. Treatment-resistant depression (TRD) is commonly defined as failure to respond to two or more trials of antidepressants. In this study, we investigated the effect of fluoxetine treatment for fourteen days on the depressive-like behavior and the oxidative and inflammatory parameters of mice submitted to chronic corticosterone administration. After 21 days of subcutaneous corticosterone administration (20 mg/kg/day) and 14 days of oral fluoxetine treatment (10 mg/kg/day, started on day 7 of induction protocol), we separated animals into two groups according to the tail suspension test (TST) results: antidepressant responders (good response to antidepressant, GRA) and non-responders (resistance to antidepressant, AR). Forced swimming test (FST), elevated plus maze test (EPMT), and open field test (OFT) were performed. We found that animals classified as AR (i.e., those with higher immobility values in the TST) demonstrated anxiety-like behavior in the EPMT, increased H2O2 levels, and decreased catalase activity in the hippocampus, as well as increased serum levels of IL-17 and IFN-γ. Our findings suggest that a redox imbalance in the hippocampus, combined with increased levels of peripheral IL-17 and INF-γ, may be involved with an impaired response to fluoxetine.


Assuntos
Corticosterona , Fluoxetina , Animais , Antidepressivos , Ansiedade/tratamento farmacológico , Comportamento Animal , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Fluoxetina/farmacologia , Hipocampo , Humanos , Peróxido de Hidrogênio/farmacologia , Interleucina-17 , Camundongos , Oxirredução , Estresse Oxidativo
3.
World J Biol Psychiatry ; 23(3): 165-182, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34100334

RESUMO

Objectives: This narrative review article provides an overview on the involvement of microglia and the hypothalamic-pituitary-adrenal (HPA) axis in the pathophysiology of depression, as well investigates the mutual relationship between these two entities: how microglial activation can contribute to the dysregulation of the HPA axis, and vice versa.Methods: Relevant studies and reviews already published in the Pubmed electronic database involving the themes microglia, HPA axis and depression were used to meet the objectives.Results: Exposition to stressful events is considered a common factor in the mechanisms proposed to explain the depressive disorder. Stress can activate microglial cells, important immune components of the central nervous system (CNS). Moreover, another system involved in the physiological response to stressors is the hypothalamic-pituitary-adrenal (HPA) axis, the main stress response system responsible for the production of the glucocorticoid hormone (GC). Also, mediators released after microglial activation can stimulate the HPA axis, inducing production of GC. Likewise, high levels of GCs are also capable of activating microglia, generating a vicious cycle.Conclusion: Immune and neuroendocrine systems seems to work in a coordinated manner and that their dysregulation may be involved in the pathophysiology of depression since neuroinflammation and hypercortisolism are often observed in this disorder.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Humanos , Microglia , Glucocorticoides , Depressão , Estresse Psicológico
4.
Behav Brain Res ; 388: 112643, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32339552

RESUMO

Depression is one of the most common mood disorders, which affects one in six people at some point in life. However, the treatment of this disease is still a challenge. Chronic corticosterone administration (CCA) is a widely used animal model to study the mechanisms involved, as well as possible therapeutic strategies for the treatment of depression. Moreover, elevated oxidative stress has been observed in psychiatric disorders, including major depression and, in this context, antioxidant therapy may be a potential therapeutic alternative. In this study, we investigated the effect of seven days of treatment with apocynin, an antioxidant of natural origin, on depressive-like behavior and oxidative parameters in mice submitted to CCA. After 21 days of corticosterone administration (20 mg/Kg/day, subcutaneously, s.c.), we observed the development of depressive-like behavior with an increase in immobility time on tail suspension test and forced swimming test and reduction in total grooming time on splash test. Also, we found high superoxide dismutase activity and hydrogen peroxide levels whereas catalase activity was reduced in the prefrontal cortex, hippocampus and striatum. Seven days of treatment with apocynin (100 mg/Kg/day orally, p.o), performed immediately after corticosterone administration in the last week of protocol, was able to reverse the most of these changes, revealing its antidepressant-like effect. In conclusion, our results suggest apocynin as an antidepressant-like agent with a mechanism of action based on the attenuation of oxidative changes induced by CCA.


Assuntos
Acetofenonas/administração & dosagem , Antidepressivos/administração & dosagem , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Corticosterona/administração & dosagem , Depressão/induzido quimicamente , Depressão/prevenção & controle , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...