Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569456

RESUMO

Adipose tissue (AT) secretes pro- and anti-inflammatory cytokines involved in AT homeostasis, including tumor necrosis factor-α (TNFα) and irisin. The functionality of AT is based on a regulated equilibrium between adipogenesis and extracellular matrix (ECM) remodeling. We investigated the contributions of adipose progenitors (ASCs) and adipocytes (AMCs) to TNFα-induced ECM remodeling and a possible implication of irisin in AT impairment in obesity. ASCs and AMCs were exposed to TNFα treatment and nuclear factor-kappa (NF-kB) pathway was investigated: Tissue Inhibitor of Metalloproteinase (TIMP-1), Twist Family Transcription Factor 1 (TWIST-1), and peroxisome proliferator-activated receptor-γ (PPARγ) expression levels were analyzed. The proteolytic activity of matrix metalloproteinases (MMPs) -2 and -9 was analyzed by zymography, and the irisin protein content was measured by ELISA. In inflamed AMCs, a TIMP-1/TWIST-1 imbalance leads to a drop in PPARγ. Adipogenesis and lipid storage ability impairment come with local tissue remodeling due to MMP-9 overactivation. In vitro and ex vivo measurements confirm positive correlations among inflammation, adipose secreting irisin levels, and circulating irisin levels in patients with visceral obesity. Our findings identify the NF-kB downstream effectors as molecular initiators of AT dysfunction and suggest irisin as a possible AT damage and obesity predictive factor.


Assuntos
Fibronectinas , Inibidor Tecidual de Metaloproteinase-1 , Humanos , Tecido Adiposo/metabolismo , Fibronectinas/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Front Cell Dev Biol ; 8: 292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509773

RESUMO

BACKGROUND: In periodontal patients with jawbone resorption, the autologous bone graft is considered a "gold standard" procedure for the placing of dental prosthesis; however, this procedure is a costly intervention and poses the risk of clinical complications. Thanks to the use of adult mesenchymal stem cells, smart biomaterials, and active biomolecules, regenerative medicine and bone tissue engineering represent a valid alternative to the traditional procedures. AIMS: In the past, mesenchymal stem cells isolated from periodontally compromised gingiva were considered a biological waste and discarded during surgical procedures. This study aims to test the osteoconductive activity of FISIOGRAFT Bone Granular® and Matriderm® collagen scaffolds on mesenchymal stem cells isolated from periodontally compromised gingiva as a low-cost and painless strategy of autologous bone tissue regeneration. MATERIALS AND METHODS: We isolated human mesenchymal stem cells from 22 healthy and 26 periodontally compromised gingival biopsy tissues and confirmed the stem cell phenotype by doubling time assay, colony-forming unit assay, and expression of surface and nuclear mesenchymal stem cell markers, respectively by cytofluorimetry and real-time quantitative PCR. Healthy and periodontally compromised gingival mesenchymal stem cells were seeded on FISIOGRAFT Bone Granular® and Matriderm® scaffolds, and in vitro cell viability and bone differentiation were then evaluated. RESULTS: Even though preliminary, the results demonstrate that FISIOGRAFT Bone Granular® is not suitable for in vitro growth and osteogenic differentiation of healthy and periodontally compromised mesenchymal stem cells, which, instead, are able to grow, homogeneously distribute, and bone differentiate in the Matriderm® collagen scaffold. CONCLUSION: Matriderm® represents a biocompatible scaffold able to support the in vitro cell growth and osteodifferentiation ability of gingival mesenchymal stem cells isolated from waste gingiva, and could be employed to develop low-cost and painless strategy of autologous bone tissue regeneration.

3.
Diabetes Metab Syndr Obes ; 13: 1565-1574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494173

RESUMO

PURPOSE: To evaluate circulating irisin levels in patients with active and controlled Cushing's disease (CD). DESIGN: Forty-four patients with CD evaluated during the active phase and after 12 months of biochemical remission and 40 controls were recruited. METHODS: Phenotypic, anthropometric, hormonal and metabolic parameters, including insulin sensitivity estimation by homeostatic model of insulin resistance, Matsuda index and oral disposition index and circulating irisin levels were evaluated. RESULTS: Patients with active CD showed lower irisin levels compared to controls (p<0.001) and controlled CD (p<0.001). The independent variables significantly associated with irisin were waist circumference (WC) (p=0.025), body fat percentage (BF%) (p=0.009), PTH (p=0.007) and chair rising test (CRT) (p<0.001) in active CD and WC (p=0.013), BF% (p=0.014), PTH (p=0.038), CRT (p=0.029) and urinary-free cortisol (p<0.001) in controlled CD. CONCLUSION: Circulating irisin levels tend to be lower in patients with active CD compared to those with controlled CD and controls. They are strongly associated with osteosarcopenia and central obesity in CD and therefore may be a possible marker of diagnosis.

4.
J Clin Med ; 9(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861546

RESUMO

Our previous studies documented that human fibroblast-limbal stem cells (f-LSCs) possess immunosuppressive capabilities, playing a role in regulating T-cell activity. This study highlights the molecular activities by which human f-LSCs can attenuate the inflammatory responses of self-reactive peripheral blood mononuclear cells (PBMCs) collected from patients with autoimmune endocrine diseases (AEDs). Anti-CD3 activated PBMCs from twenty healthy donors and fifty-two patients with AEDs were cocultured on f-LSC monolayer. 2D-DIGE proteomic experiments, mass spectrometry sequencing and functional in vitro assays were assessed in cocultured PBMCs. We identified the downmodulation of several human heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) isoforms in healthy and AED activated PBMCs upon f-LSC interaction. The reduction of hnRNPA2/B1 protein expression largely affected the cycling ki67+, CD25+, PD-1+ reactive cells and the double marked CD8+/hnRNPA2B1+ T cell subset. Anti-PD1 blocking experiments evoked hnRNPA2/B1 overexpression, attributing putative activation function to the protein. hnRNPA2/B2 transient silencing inverted immunopolarization of the self-reactive PBMCs from AEDs toward a M2/Th2-type background. Pharmacological inhibition and co-immunoprecipitation experiments demonstrated the involvement of NF-ĸB in hnRNPA2/B activity and turnover. Our data indicate cardinal involvement of hnRNP A2/B1 protein in peripheral mechanisms of tolerance restoration and attenuation of inflammation, identifying a novel immunoplayer potentially targetable in all AEDs.

5.
J Cell Mol Med ; 23(11): 7210-7221, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513338

RESUMO

Ex vivo limbal stem cell transplantation is the main therapeutic approach to address a complete and functional re-epithelialization in corneal blindness, the second most common eye disorder. Although important key points were defined, the molecular mechanisms involved in the epithelial phenotype determination are unclear. Our previous studies have demonstrated the pluripotency and immune-modulatory of fibroblast limbal stem cells (f-LSCs), isolated from the corneal limbus. We defined a proteomic profile especially enriched in wound healing and cytoskeleton-remodelling proteins, including Profilin-1 (PFN1). In this study we postulate that pfn-1 knock down promotes epithelial lineage by inhibiting the integrin-ß1(CD29)/mTOR pathway and subsequent NANOG down-expression. We showed that it is possible modulate pfn1 expression levels by treating f-LSCs with Resveratrol (RSV), a natural compound: pfn1 decline is accompanied with up-regulation of the specific differentiation epithelial genes pax6 (paired-box 6), sox17 (sex determining region Y-box 17) and ΔNp63-α (p63 splice variant), consistent with drop-down of the principle stem gene levels. These results contribute to understand the molecular biology of corneal epithelium development and suggest that pfn1 is a potential molecular target for the treatment of corneal blindness based on epithelial cell dysfunction.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Integrina beta1/metabolismo , Limbo da Córnea/citologia , Profilinas/metabolismo , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Integrina beta1/genética , Limbo da Córnea/metabolismo , Profilinas/genética , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/genética , Cicatrização
6.
Int J Mol Sci ; 20(10)2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31130693

RESUMO

The core components of regenerative medicine are stem cells with high self-renewal and tissue regeneration potentials. Adult stem cells can be obtained from many organs and tissues. NANOG, SOX2 and OCT4 represent the core regulatory network that suppresses differentiation-associated genes, maintaining the pluripotency of mesenchymal stem cells. The roles of NANOG in maintaining self-renewal and undifferentiated status of adult stem cells are still not perfectly established. In this study we define the effects of downregulation of NANOG in maintaining self-renewal and undifferentiated state in mesenchymal stem cells (MSCs) derived from subcutaneous adipose tissue (hASCs). hASCs were expanded and transfected in vitro with short hairpin Lentivirus targeting NANOG. Gene suppressions were achieved at both transcript and proteome levels. The effect of NANOG knockdown on proliferation after 10 passages and on the cell cycle was evaluated by proliferation assay, colony forming unit (CFU), qRT-PCR and cell cycle analysis by flow-cytometry. Moreover, NANOG involvement in differentiation ability was evaluated. We report that downregulation of NANOG revealed a decrease in the proliferation and differentiation rate, inducing cell cycle arrest by increasing p27/CDKN1B (Cyclin-dependent kinase inhibitor 1B) and p21/CDKN1A (Cyclin-dependent kinase inhibitor 1A) through p53 and regulate DLK1/PREF1. Furthermore, NANOG induced downregulation of DNMT1, a major DNA methyltransferase responsible for maintaining methylation status during DNA replication probably involved in cell cycle regulation. Our study confirms that NANOG regulates the complex transcription network of plasticity of the cells, inducing cell cycle arrest and reducing differentiation potential.


Assuntos
Proliferação de Células , Pontos de Checagem da Fase G1 do Ciclo Celular , Células-Tronco Mesenquimais/citologia , Proteína Homeobox Nanog/genética , Adulto , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade
8.
Stem Cell Res Ther ; 8(1): 179, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764802

RESUMO

BACKGROUND: Chronic periodontal disease is an infectious disease consisting of prolonged inflammation of the supporting tooth tissue and resulting in bone loss. Guided bone regeneration procedures have become common and safe treatments in dentistry, and in this context dental stem cells would represent the ideal solution as autologous cells. In this study, we verified the ability of dental pulp mesenchymal stem cells (DPSCs) and gingival mesenchymal stem cells (GMSCs) harvested from periodontally affected teeth to produce new mineralized bone tissue in vitro, and compared this to cells from healthy teeth. METHODS: To characterize DPSCs and GMSCs, we assessed colony-forming assay, immunophenotyping, mesenchymal/stem cell phenotyping, stem gene profiling by means of flow cytometry, and quantitative polymerase chain reaction (qPCR). The effects of proinflammatory cytokines on mesenchymal stem cell (MSC) proliferation and differentiation potential were investigated. We also observed participation of several heat shock proteins (HSPs) and actin-depolymerizing factors (ADFs) during osteogenic differentiation. RESULTS: DPSCs and GMSCs were successfully isolated both from periodontally affected dental tissue and controls. Periodontally affected dental MSCs proliferated faster, and the inflamed environment did not affect MSC marker expressions. The calcium deposition was higher in periodontally affected MSCs than in the control group. Proinflammatory cytokines activate a cytoskeleton remodeling, interacting with HSPs including HSP90 and HSPA9, thioredoxin-1, and ADFs such as as profilin-1, cofilin-1, and vinculin that probably mediate the increased acquisition in the inflamed environment. CONCLUSIONS: Our findings provide evidence that periodontally affected dental tissue (both pulp and gingiva) can be used as a source of MSCs with intact stem cell properties. Moreover, we demonstrated that the osteogenic capability of DPSCs and GMSCs in the test group was not only preserved but increased by the overexpression of several proinflammatory cytokine-dependent chaperones and stress response proteins.


Assuntos
Diferenciação Celular , Polpa Dentária/metabolismo , Gengiva/metabolismo , Gengivite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Periodontite/metabolismo , Adolescente , Adulto , Idoso , Células Cultivadas , Polpa Dentária/patologia , Feminino , Gengiva/patologia , Gengivite/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Periodontite/patologia
9.
Stem Cell Res Ther ; 8(1): 154, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673339

RESUMO

BACKGROUND: Due to their "natural immune privilege" and immunoregulatory properties human fibroblast-like limbal stem cells (f-LSCs) have acquired great interest as a potential tool for achieving immunotolerance. Hashimoto's thyroiditis (HT) is the most common thyroid autoimmune disease and cause of hypothyroidism. To date, conventional hormone replacement therapy and unspecific immunosuppressive regimens cannot provide a definitive cure for HT subjects. We explored the immunosuppressant potential of human f-LSCs on circulating lymphomonocytes (PBMCs) collected from healthy donors and female HT patients. METHODS: We assessed the immunophenotyping of f-LSCs, both untreated and after 48 h of proinflammatory cytokine exposure, by means of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and flow cytometry. The immunosuppressant effects of f-LSCs on healthy activated PBMCs were investigated in cell-cell contact and transwell settings through cell cycle assay, acridine orange staining, and caspase-3 detection. We also studied T-cell responses and possible Treg conversion by means of flow cytometry. Functional assays were conducted in activated HT lymphocytes cocultured with f-LSCs after carboxyfluorescein succinimidyl ester labeling and intracellular detection of pro- and anti-inflammatory cytokines. RESULTS: The hypo-immunogenicity of the f-LSC population depended on both cell contact and soluble factors produced, as well as the undetectable expression of all those molecules required to fully activate T lymphocytes. Following exposure to Th1 cytokines, f-LSCs augmented expression of programmed death-ligand 1 and 2 (PDL-1 and -2), indoleamine-pyrrole-2,3-dioxygenase (IDO), interleukin (IL)-6, and monocyte chemotactic protein 1 (MCP-1) while maintaining their negative phenotype for major histocompatibility (MHC) class II and costimulatory molecules. During coculture, f-LSCs suppressed up to 40% of proliferation in healthy activated PBMCs, arrested them in the G0/G1 cell cycle phase without inducing apoptosis cascade, inverted the CD4/CD8 ratio, and promoted sustained expression of the immunomodulator marker CD69. Under coculture conditions the Th imbalance of autoreactive T cells from female HT patients was fully restored. CONCLUSIONS: Our study describes an in vitro coculture system able to prevent inappropriate activation of autoreactive T lymphocytes of female HT patients and to generate a tolerogenic environment even in an inflammatory background. Further investigations are necessary to establish whether this stem cell-based therapy approach in HT could avoid lifetime hormone replacement therapy by inducing T-cell education.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fibroblastos/imunologia , Doença de Hashimoto/imunologia , Tolerância Imunológica , Células-Tronco/imunologia , Células Th1/imunologia , Adulto , Idoso , Linfócitos T CD8-Positivos/patologia , Células Cultivadas , Citocinas/imunologia , Feminino , Fibroblastos/fisiologia , Doença de Hashimoto/patologia , Humanos , Pessoa de Meia-Idade , Células-Tronco/patologia , Células Th1/patologia
10.
Int J Mol Sci ; 18(6)2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28545230

RESUMO

The stromal vascular cell fraction (SVF) of visceral and subcutaneous adipose tissue (VAT and SAT) has increasingly come into focus in stem cell research, since these compartments represent a rich source of multipotent adipose-derived stem cells (ASCs). ASCs exhibit a self-renewal potential and differentiation capacity. Our aim was to study the different expression of the embryonic stem cell markers NANOG (homeobox protein NANOG), SOX2 (SRY (sex determining region Y)-box 2) and OCT4 (octamer-binding transcription factor 4) and to evaluate if there exists a hierarchal role in this network in ASCs derived from both SAT and VAT. ASCs were isolated from SAT and VAT biopsies of 72 consenting patients (23 men, 47 women; age 45 ± 10; BMI between 25 ± 5 and 30 ± 5 range) undergoing elective open-abdominal surgery. Sphere-forming capability was evaluated by plating cells in low adhesion plastic. Stem cell markers CD90, CD105, CD29, CD31, CD45 and CD146 were analyzed by flow cytometry, and the stem cell transcription factors NANOG, SOX2 and OCT4 were detected by immunoblotting and real-time PCR. NANOG, SOX2 and OCT4 interplay was explored by gene silencing. ASCs from VAT and SAT confirmed their mesenchymal stem cell (MSC) phenotype expressing the specific MSC markers CD90, CD105, NANOG, SOX2 and OCT4. NANOG silencing induced a significant OCT4 (70 ± 0.05%) and SOX2 (75 ± 0.03%) downregulation, whereas SOX2 silencing did not affect NANOG gene expression. Adipose tissue is an important source of MSC, and siRNA experiments endorse a hierarchical role of NANOG in the complex transcription network that regulates pluripotency.


Assuntos
Tecido Adiposo/citologia , Proteína Homeobox Nanog/metabolismo , Adulto , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
12.
Stem Cell Res Ther ; 7(1): 83, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296060

RESUMO

BACKGROUND: In regenerative medicine the maintenance of stem cell properties is of crucial importance. Ageing is considered a cause of reduced stemness capability. The limbus is a stem niche of easy access and harbors two stem cell populations: epithelial stem cells and fibroblast-like stem cells. Our aim was to investigate whether donor age and/or long-term culture have any influence on stem cell marker expression and the profiles in the fibroblast-like stem cell population. METHODS: Fibroblast-like stem cells were isolated and digested from 25 limbus samples of normal human corneo-scleral rings and long-term cultures were obtained. SSEA4 expression and sphere-forming capability were evaluated; cytofluorimetric assay was performed to detect the immunophenotypes HLA-DR, CD45, and CD34 and the principle stem cell markers ABCG2, OCT3/4, and NANOG. Molecular expression of the principal mesenchymal stem cell genes was investigated by real-time PCR. Two-dimensional gel electrophoresis and mass spectrometric sequencing were performed and a stable proteomic profile was identified. The proteins detected were explored by gene ontology and STRING analysis. The data were reported as means ± SD, compared by Student's unpaired t test and considering p < 0.05 as statistically significant. RESULTS: The isolated cells did not display any hematopoietic surface marker (CD34 and CD45) and HLA-DR and they maintained these features in long-term culture. The expression of the stemness genes and the multilineage differentiation under in-vitro culture conditions proved to be well maintained. Proteomic analysis revealed a fibroblast-like stem cell profile of 164 proteins with higher expression levels. Eighty of these showed stable expression levels and were involved in maintenance of "the stem gene profile"; 84 were differentially expressed and were involved in structural activity. CONCLUSIONS: The fibroblast-like limbal stem cells confirmed that they are a robust source of adult stem cells and that they have good plasticity, good proliferative capability, and long-term maintenance of stem cell properties, independently of donor age and long-term culture conditions. Our findings confirm that limbal fibroblast-like stem cells are highly promising for application in regenerative medicine and that in-vitro culture steps do not influence their stem cell properties. Moreover, the proteomic data enrich our knowledge of fibroblast-like stem cells.


Assuntos
Células Epiteliais/citologia , Epitélio Corneano/citologia , Fibroblastos/citologia , Limbo da Córnea/citologia , Células-Tronco/citologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Fatores Etários , Idoso , Biomarcadores/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Limbo da Córnea/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Cultura Primária de Células , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismo , Células-Tronco/metabolismo
13.
Atherosclerosis ; 246: 50-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26756970

RESUMO

BACKGROUND: HDL-C plasma levels are modulated by dietary fatty acid (FA), but studies investigating dietary supplementation in FA gave contrasting results. Saturated FA increased HDL-C levels only in some studies. Mono-unsaturated FA exerted a slight effect while poly-unsaturated FA mostly increased plasma HDL-C. AIMS: This study presents two aims: i) to investigate the relationship between HDL-C levels and plasma FA composition in a Sicilian population following a "Mediterranean diet", ii) to investigate if FA that resulted correlated with plasma HDL-C levels in the population study and/or very abundant in the plasma were able to affect HDL catabolism in an "in vitro" model of cultured hepatoma cells (HepG2). RESULTS: plasma HDL-C levels in the population correlated negatively with myristic acid (C14:0, ß = -0.24, p < 0.01), oleic acid (C18:1n9, ß = -0.22, p < 0.01) and cis-11-Eicosenoic (C20:1n9, ß = -0.19, p = 0.01) and positively with palmitoleic acid (C16:1, ß = +0.19, p = 0.03). HepG2 cells were conditioned with FA before evaluating HDL binding kinetics, and only C14:0 increased HDL binding by a non-saturable pathway. After removal of heparan sulphate proteoglycans (HSPG) by heparinases HDL binding dropped by 29% only in C14:0 conditioned cells (p < 0.05). C14:0 showed also the highest internalization of HDL-derived cholesteryl esters (CE, +32% p = 0.01 vs. non-conditioned cells). CONCLUSIONS: C14:0 was correlated with decreased plasma HDL-C levels in a Mediterranean population. C14:0 might reduce HDL-C levels by increasing HDL trapping to cell surface HSPG and CE stripping from bound HDL. Other mechanisms are to be investigated to explain the effects of other FA on HDL metabolism.


Assuntos
Biomarcadores/sangue , Carcinoma Hepatocelular/metabolismo , HDL-Colesterol/sangue , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Ácido Mirístico/sangue , Adulto , Idoso , Ésteres do Colesterol/metabolismo , Dieta Mediterrânea , Feminino , Células Hep G2 , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Sicília
14.
Int J Endocrinol ; 2015: 439370, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705224

RESUMO

It has been suggested that cancer stem cells (CSC) may play a central role in oncogenesis, especially in undifferentiated tumours. Anaplastic thyroid carcinoma (ATC) has characteristics suggestive of a tumour enriched in CSC. Previous studies suggested that the stem cell factor SOX2 has a preeminent hierarchical role in determining the characteristics of stem cells in SW1736 ATC cell line. In detail, silencing SOX2 in SW1736 is able to suppress the expression of the stem markers analysed, strongly sensitizing the line to treatment with chemotherapeutic agents. Therefore, in order to further investigate the role of SOX2 in ATC, a competing endogenous RNA (ceRNA) analysis was conducted in order to isolate new functional partners of SOX2. Among the interactors, of particular interest are genes involved in the biogenesis of miRNAs (DICER1, RNASEN, and EIF2C2), in the control cell cycle (TP53, CCND1), and in mitochondrial activity (COX8A). The data suggest that stemness, microRNA biogenesis and functions, p53 regulatory network, cyclin D1, and cell cycle control, together with mitochondrial activity, might be coregulated.

15.
Gerontology ; 60(3): 197-203, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603298

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to a severe premature ageing phenotype, caused by mutations in the LMNA gene. The LMNA gene codes for lamin-A and lamin-C proteins, which are structural components of the nuclear lamina. HGPS is usually caused by a de novo C1824T mutation that leads to the accumulation of a dominant negative form of lamin-A called progerin. Progerin also accumulates physiologically in normal ageing cells as a rare splicing form of lamin-A transcripts. From this perspective, HGPS cells seem to be good candidates for the study of the physiological mechanisms of ageing. Progerin accumulation leads to faster cellular senescence, stem cell depletion and the progeroid phenotype. Tissues of mesodermic origin are especially affected by HGPS. HGPS patients usually have a bad quality of life and, with current treatments, their life expectancy does not exceed their second decade at best. Though progerin can be expressed in almost any tissue, when death occurs, it is usually due to cardiovascular complications. In HGPS, severe epigenetic alterations have been reported. Histone-covalent modifications are radically different from control specimens, with the tendency to lose the bipartition into euchromatin and heterochromatin. This is reflected in an altered spatial compartmentalization and conformation of chromatin within the nucleus. Moreover, it seems that microRNAs and microRNA biosynthesis might play a role in HGPS. Exemplary in this connection is the suggested protective effect of miR-9 on the central nervous system of affected individuals. This mini-review will report on the state of the art of HGPS epigenetics, and there will be a discussion of how epigenetic alterations in HGPS cells can alter the cellular metabolism and lead to the systemic syndrome.


Assuntos
Epigênese Genética , Progéria/genética , Trifosfato de Adenosina/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Criança , Montagem e Desmontagem da Cromatina , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
16.
Thyroid ; 23(7): 829-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23301671

RESUMO

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is a rare and aggressive endocrine tumor with highly undifferentiated morphology. It has been suggested that cancer stem cells (CSCs) might play a central role in ATC. The objectives of this study were (i) to characterize CSCs from ex vivo ATC specimens by investigating the expression of several pluripotent stem cell markers, and (ii) to evaluate in vitro drug resistance modifications after specific CSC transcription factor switch-off. METHODS: In ex vivo experiments, eight formalin-fixed, paraffin-embedded ATC specimens were analyzed by reverse-transcription and real-time quantitative PCR and immunohistochemistry. In in vitro experiments using ATC SW1736 cells, the expression levels of OCT-4, NANOG, and ABCG2 and the sensitivity to either cisplatin or doxorubicin were evaluated after silencing. RESULTS: OCT-4, KLF4, and SOX2 transcription factors and C-KIT and THY-1 stem surface antigens showed variable up-regulation in all ATC cases. The SW1736 cell line was characterized by a high percentage of stem population (10.4±2.1% of cells were aldehyde dehydrogenase positive) and high expression of several CSC markers (SOX2, OCT4, NANOG, C-MYC, and SSEA4). SOX2 silencing down-regulated OCT-4, NANOG, and ABCG2. SOX2 silencing sensitized SW1736 cells, causing a significant cell death increase (1.8-fold) in comparison to control cells with 10 µM cisplatin (93.9±3.4% vs. 52.6±9.4%, p<0.01) and 2.7 fold with 0.5 µM doxorubicin (45.8±9.9% vs. 17.1±3.4% p<0.01). ABCG2 silencing caused increased cell death with both cisplatin (74.9±1.4%) and doxorubicin treatment (74.1±0.1%) vs. no-target-treated cells (respectively, 45.8±1.0% and 48.6±1.0%, p<0.001). CONCLUSIONS: The characterization of CSCs in ATC through the analysis of multiple pluripotent stem cell markers might be useful in identifying cells with a stem-like phenotype capable of resisting conventional chemotherapy. In addition, our data demonstrate that SOX2 switch-off through ABCG2 transporter down-regulation has a major role in overcoming CSC chemotherapy resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição SOXB1/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Linhagem Celular Tumoral , Cisplatino/farmacologia , Regulação para Baixo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio/genética , Humanos , Fator 4 Semelhante a Kruppel , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Regulação para Cima
17.
PLoS One ; 7(2): e32109, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393382

RESUMO

Type 1 diabetes mellitus (T1DM) is caused by the selective destruction of insulin-producing ß-cells. This process is mediated by cells of the immune system through release of nitric oxide, free radicals and pro-inflammatory cytokines, which induce a complex network of intracellular signalling cascades, eventually affecting the expression of genes involved in ß-cell survival.The aim of our study was to investigate possible mechanisms of resistance to cytokine-induced ß-cell death. To this purpose, we created a cytokine-resistant ß-cell line (ß-TC3R) by chronically treating the ß-TC3 murine insulinoma cell line with IL-1ß + IFN-γ. ß-TC3R cells exhibited higher proliferation rate and resistance to cytokine-mediated cell death in comparison to the parental line. Interestingly, they maintained expression of ß-cell specific markers, such as PDX1, NKX6.1, GLUT2 and insulin. The analysis of the secretory function showed that ß-TC3R cells have impaired glucose-induced c-peptide release, which however was only moderately reduced after incubation with KCl and tolbutamide. Gene expression analysis showed that ß-TC3R cells were characterized by downregulation of IL-1ß and IFN-γ receptors and upregulation of SOCS3, the classical negative regulator of cytokines signaling. Comparative proteomic analysis showed specific upregulation of 35 proteins, mainly involved in cell death, stress response and folding. Among them, SUMO4, a negative feedback regulator in NF-kB and JAK/STAT signaling pathways, resulted hyper-expressed. Silencing of SUMO4 was able to restore sensitivity to cytokine-induced cell death in ß-TC3R cells, suggesting it may play a key role in acquired cytokine resistance by blocking JAK/STAT and NF-kB lethal signaling.In conclusion, our study represents the first extensive proteomic characterization of a murine cytokine-resistant ß-cell line, which might represent a useful tool for studying the mechanisms involved in resistance to cytokine-mediated ß-cell death. This knowledge may be of potential benefit for patients with T1DM. In particular, SUMO4 could be used as a therapeutical target.


Assuntos
Citocinas/metabolismo , Células Secretoras de Insulina/citologia , Animais , Apoptose , Técnicas de Cultura de Células , Ciclo Celular , Morte Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo , Inativação Gênica , Genômica/métodos , Imuno-Histoquímica/métodos , Insulinoma/metabolismo , Camundongos , NF-kappa B/metabolismo , Fenótipo , Proteômica/métodos
18.
Cell Transplant ; 21(1): 73-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21669045

RESUMO

Stem cells might provide unlimited supply of transplantable cells for ß-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and ß-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature ß-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ∼98% of their proinsulin content, similar to mature ß-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli, including glucose. In conclusion, f-LSCs represent a possible relevant source of autologous, transplantable, insulin-producing cells that could be tested for the reversal of diabetes.


Assuntos
Diferenciação Celular/fisiologia , Células Secretoras de Insulina/citologia , Limbo da Córnea/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Biomarcadores , Células Cultivadas , Diabetes Mellitus/terapia , Humanos , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco Pluripotentes/metabolismo
19.
Lipids Health Dis ; 10: 183, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22011564

RESUMO

BACKGROUND: The Visceral Adiposity Index (VAI) is a sex-specific mathematical index, based on Waist Circumference (WC), Body Mass Index (BMI), triglycerides (TG) and HDL cholesterol (HDL) levels, indirectly expressing visceral adipose function and insulin sensitivity. Our aim was to find the optimal cut-off points of VAI identifying a visceral adipose dysfunction (VAD) associated with cardiometabolic risk in a Caucasian Sicilian population. METHODS: Medical check-up data of 1,764 Primary Care patients (PC patients) were retrospectively and cross-sectionally examined using a receiver-operating characteristic (ROC) curve to determine appropriate stratified-for-age cut-off of VAI, for the identification of PC patients with Metabolic Syndrome (MetS) according to the NCEP-ATP III criteria. The PC patients with higher VAI scores were subdivided into three groups according to VAI tertiles (i.e. PC patients with mild VAD, moderate VAD or severe VAD). Finally, VAD classes were compared to classical cardio- and cerebrovascular risk factors as independent predictors of coronary heart disease and/or myocardial infarction, transient ischemic attack and/or ischemic stroke. RESULTS: Moderate and severe VADs proved to be independently associated with cardiovascular events [(OR: 5.35; 95% CI: 1.92-14.87; p = 0.001) and (OR: 7.46; 95% CI: 2.64-21.05; p < 0.001) respectively]. Mild, moderate and severe VADs were found to be independently associated with cerebrovascular events [(OR: 2.73; 95% CI: 1.12-6.65; p = 0.027), (OR: 4.20; 95% CI: 1.86-9.45; p = 0.001) and (OR: 5.10; 95% CI: 2.14-12.17; p < 0.001) respectively]. CONCLUSIONS: Our study suggests that among Caucasian Sicilian subjects there are clear cut-off points of VAI able to identify a VAD strongly associated with cardiometabolic risk.


Assuntos
Doenças Cardiovasculares/patologia , Diabetes Mellitus Tipo 2/patologia , Gordura Intra-Abdominal/patologia , Síndrome Metabólica/diagnóstico , População Branca , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Pesos e Medidas Corporais , Doenças Cardiovasculares/etnologia , Estudos Transversais , Diabetes Mellitus Tipo 2/etnologia , Feminino , Humanos , Masculino , Síndrome Metabólica/etnologia , Pessoa de Meia-Idade , Prevalência , Valores de Referência , Estudos Retrospectivos , Fatores de Risco , Sicília/epidemiologia , Adulto Jovem
20.
Endocr Relat Cancer ; 18(6): 669-85, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21903858

RESUMO

BRAF(V600E) is the most common mutation found in papillary thyroid carcinoma (PTC). Tissue inhibitor of metalloproteinases (TIMP-1) and nuclear factor (NF)-κB have been shown to play an important role in thyroid cancer. In particular, TIMP-1 binds its receptor CD63 on cell surface membrane and activates Akt signaling pathway, which is eventually responsible for its anti-apoptotic activity. The aim of our study was to evaluate whether interplay among these three factors exists and exerts a functional role in PTCs. To this purpose, 56 PTC specimens were analyzed for BRAF(V600E) mutation, TIMP-1 expression, and NF-κB activation. We found that BRAF(V600E) mutation occurs selectively in PTC nodules and is associated with hyperactivation of NF-κB and upregulation of both TIMP-1 and its receptor CD63. To assess the functional relationship among these factors, we first silenced BRAF gene in BCPAP cells, harboring BRAF(V600E) mutation. We found that silencing causes a marked decrease in TIMP-1 expression and NF-κB binding activity, as well as decreased invasiveness. After treatment with specific inhibitors of MAPK pathway, we found that only sorafenib was able to increase IκB-α and reduce both TIMP-1 expression and Akt phosphorylation in BCPAP cells, indicating that BRAF(V600E) activates NF-κB and this pathway is MEK-independent. Taken together, our findings demonstrate that BRAF(V600E) causes upregulation of TIMP-1 via NF-κB. TIMP-1 binds then its surface receptor CD63, leading eventually to Akt activation, which in turn confers antiapoptotic behavior and promotion of cell invasion. The recognition of this functional trilogy provides insight on how BRAF(V600E) determines cancer initiation, progression, and invasiveness in PTC, also identifying new therapeutic targets for the treatment of highly aggressive forms.


Assuntos
Transformação Celular Neoplásica/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Adulto , Substituição de Aminoácidos/fisiologia , Carcinoma , Carcinoma Papilar , Transformação Celular Neoplásica/patologia , Progressão da Doença , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Ácido Glutâmico/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/fisiologia , Invasividade Neoplásica , Proteínas Proto-Oncogênicas B-raf/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/genética , Valina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...