Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 12(22): 20783-20797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962239

RESUMO

BACKGROUND: Patient survival in advanced/metastatic melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC) has improved with immune checkpoint inhibitors (ICI). Biomarkers' role in prognosis and treatment has been limited by conflicting trial results. METHODS: This retrospective, observational study analyzed baseline demographic, clinical, laboratory, and treatment data versus outcomes of The US Oncology Network adult outpatients. Patients with advanced/metastatic melanoma, NSCLC, or RCC treated between January 1, 2015 and November 30, 2020 were given ICI monotherapy or combination therapy with ipilimumab, pembrolizumab, nivolumab, or atezolizumab. Treatment outcomes (overall survival [OS], time to treatment discontinuation, time to next treatment) were followed longitudinally until May 31, 2021, last patient record, or date of death. Baseline blood cell counts, including absolute monocyte count (AMC), absolute lymphocyte count (ALC), monocyte-to-lymphocyte ratio (MLR), absolute neutrophil count (ANC), and eosinophil count, were subdivided into quintiles for univariate and multivariable Cox regression analyses. RESULTS: Data from 18,186 patients with advanced/metastatic melanoma (n = 3314), NSCLC (n = 12,416), and RCC (n = 2456) were analyzed. Better OS correlated with increased baseline serum albumin concentration, increased eosinophil and lymphocyte counts, and Western United States physician practice location. Decreased OS correlated with increased AMC, MLR, ANC, age, and worse Eastern Cooperative Oncology Group performance status. CONCLUSIONS: To our knowledge, this study is the largest to date to associate baseline survival indicators and outcomes in outpatients with advanced/metastatic melanoma, NSCLC, or RCC and receiving ICIs. Results may inform disease-specific prognostic models and help providers identify patients most likely to benefit from ICI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Melanoma , Adulto , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/secundário , Carcinoma de Células Renais/tratamento farmacológico , Pacientes Ambulatoriais , Estudos Retrospectivos , Contagem de Linfócitos , Neoplasias Renais/tratamento farmacológico
2.
Front Immunol ; 13: 1069444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685591

RESUMO

Introduction: Endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF), identified by its ability to support differentiation of hematopoietic cells into several types of myeloid cells, is now known to support maturation and maintain the metabolic capacity of mononuclear phagocytes including monocytes, macrophages, and dendritic cells. These cells sense and attack potential pathogens, present antigens to adaptive immune cells, and recruit other immune cells. Recombinant human (rhu) GM-CSF (e.g., sargramostim [glycosylated, yeast-derived rhu GM-CSF]) has immune modulating properties and can restore the normal function of mononuclear phagocytes rendered dysfunctional by deficient or insufficient endogenous GM-CSF. Methods: We reviewed the emerging biologic and cellular effects of GM-CSF. Experts in clinical disease areas caused by deficient or insufficient endogenous GM-CSF examined the role of GM-CSF in mononuclear phagocyte disorders including autoimmune pulmonary alveolar proteinosis (aPAP), diverse infections (including COVID-19), wound healing, and anti-cancer immune checkpoint inhibitor therapy. Results: We discuss emerging data for GM-CSF biology including the positive effects on mitochondrial function and cell metabolism, augmentation of phagocytosis and efferocytosis, and immune cell modulation. We further address how giving exogenous rhu GM-CSF may control or treat mononuclear phagocyte dysfunction disorders caused or exacerbated by GM-CSF deficiency or insufficiency. We discuss how rhu GM-CSF may augment the anti-cancer effects of immune checkpoint inhibitor immunotherapy as well as ameliorate immune-related adverse events. Discussion: We identify research gaps, opportunities, and the concept that rhu GM-CSF, by supporting and restoring the metabolic capacity and function of mononuclear phagocytes, can have significant therapeutic effects. rhu GM-CSF (e.g., sargramostim) might ameliorate multiple diseases of GM-CSF deficiency or insufficiency and address a high unmet medical need.


Assuntos
COVID-19 , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , COVID-19/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...