Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754152

RESUMO

The recoil motions in free swimming, given by lateral and angular rigid motions due to the interaction with the surrounding water, are of great importance for a correct evaluation of both the forward locomotion speed and efficiency of a fish-like body. Their contribution is essential for calculating the actual movements of the body rear end whose prominent influence on the generation of the proper body deformation was established a long time ago. In particular, the recoil motions are found here to promote a dramatic improvement of the performance when damaged fishes, namely for a partial functionality of the tail or even for its complete loss, are considered. In fact, the body deformation, which turns out to become oscillating and symmetric in the extreme case, is shown to recover in the water frame a kind of undulation leading to a certain locomotion speed though at the expense of a large energy consumption. There has been a deep interest in the subject since the infancy of swimming studies, and a revival has recently arisen for biomimetic applications to robotic fish-like bodies. We intend here to apply a theoretical impulse model to the oscillating fish in free swimming as a suitable test case to strengthen our belief in the beneficial effects of the recoil motions. At the same time, we intend to exploit the linearity of the model to detect from the numerical simulations the intrinsic physical reasons related to added mass and vorticity release behind the experimental observations.

2.
Sci Rep ; 12(1): 4946, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322112

RESUMO

Velocity burst and quick turning are performed by fish during fast maneuvers which might be essential to their survival along pray-predator encounters. The parameters to evaluate these truly unsteady motions are totally different from the ones for cruising gaits since a very large acceleration, up to several times the gravity, and an extreme turning capability, in less than one body length, are now the primary requests. Such impressive performances, still poorly understood, are not common to other living beings and are clearly related to the interaction with the aquatic environment. Hence, we focus our attention on the water set in motion by the body, giving rise to the relevant added mass and the associated phenomena in transient conditions, which may unveil the secret of the great maneuverability observed in nature. Many previous studies were almost exclusively concentrated on the vortical wake, whose account, certainly dominant at steady state, is not sufficient to explain the entangled transient phenomena. A simple two-dimensional impulse model with concentrated vorticity is used for the self-propulsion of a deformable body in an unbounded fluid domain, to single out the potential and the vortical impulses and to highlight their interplay induced by recoil motions.


Assuntos
Aceleração , Peixes , Animais , Fenômenos Biomecânicos , Marcha , Movimento (Física) , Natação
3.
Sci Rep ; 11(1): 22297, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785731

RESUMO

Several fish species propel by oscillating the tail, while the remaining part of the body essentially contributes to the overall drag. Since in this case thrust and drag are in a way separable, most attention was focused on the study of propulsive efficiency for flapping foils under a prescribed stream. We claim here that the swimming performance should be evaluated, as for undulating fish whose drag and thrust are severely entangled, by turning to self-propelled locomotion to find the proper speed and the cost of transport for a given fishlike body. As a major finding, the minimum value of this quantity corresponds to a locomotion speed in a range markedly different from the one associated with the optimal efficiency of the propulsor. A large value of the feathering parameter characterizes the minimum cost of transport while the optimal efficiency is related to a large effective angle of attack. We adopt here a simple two-dimensional model for both inviscid and viscous flows to proof the above statements in the case of self-propelled axial swimming. We believe that such an easy approach gives a way for a direct extension to fully free swimming and to real-life configurations.

4.
PLoS One ; 15(3): e0229746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32126133

RESUMO

Dynamic soaring is a flight technique used by albatrosses and other birds to cover large distances without the expenditure of energy, which is extracted from the available wind conditions, as brightly perceived five centuries ago by Leonardo da Vinci. Closed dynamic soaring trajectories use spatial variations of wind speed to travel, in principle, indefinitely over a prescribed area. The application of the concept of closed dynamic soaring trajectories to aerial vehicles, such as UAVs, may provide a solution to improve the endurance in certain missions. The main limitation of dynamic soaring is its dependence on the wind characteristics. More than one century ago, Lord Rayleigh proposed a very simple model, based on the repeated crossing of a step wind profile, presently known as Rayleigh cycle, that provides a clear explanation of the physical phenomenon. The present paper studies the feasibility of closed, single-loop, energy-neutral trajectories for a broad set of wind and vehicle conditions. Through the use of trajectory optimization methods, it was possible to see how the shape of the wind profile, the initial flight conditions and the vehicle constraints influence the required wind strength to perform dynamic soaring trajectories and consequently their feasibility. It was possible to conclude that there are optimal values for the initial airspeed and initial height of the vehicle, that minimize the required wind strength. In addition, it was seen how the structural and aerodynamic constraints of the vehicle affect dynamic soaring at high and low airspeeds respectively. Finally, some new trajectories that can be performed in conditions of excess wind are proposed. The purpose is to maximize the time spent aloft and the path length while maintaining the concept of single-loop, energy-neutral trajectories, making them especially useful for aerial vehicles surveillance applications.


Assuntos
Aviação/métodos , Aves/fisiologia , Voo Animal/fisiologia , Modelos Teóricos , Vento , Animais , Estudos de Viabilidade , Asas de Animais/fisiologia
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 2): 056312, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12786277

RESUMO

We address the phenomenon of drag reduction by a dilute polymeric additive to turbulent flows, using direct numerical simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag reduction we initiate in this paper an investigation of the most important modes that are sustained in the viscoelastic and Newtonian turbulent flows, respectively. The modes are obtained empirically using the Karhunen-Loéve decomposition, allowing us to compare the most energetic modes in the viscoelastic and Newtonian flows. The main finding of the present study is that the spatial profile of the most energetic modes is hardly changed between the two flows. What changes is the energy associated with these modes, and their relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an important clue to the mechanism of drag reduction as is proposed in this paper. In particular, there is an enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag reduction is seen in the energy containing modes rather than the dissipative modes, as proposed in some previous theories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...