Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 139: 105667, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657192

RESUMO

This study aimed to evaluate the influence of ceramic surface treatments, resin cement viscosities, and storage regimens on the fatigue performance of bonded glass-ceramics (lithium disilicate, LD; feldspathic, FEL). Ceramic discs (Ø = 10 mm; thickness = 1.5 mm) were allocated into eight groups per ceramic (n = 15), considering three factors: "ceramic surface treatment" in two levels - 5% hydrofluoric acid etching and silane-based coupling agent application (HF), or self-etching ceramic primer (E&P); "resin cement viscosity" in two levels - in high or low viscosity; and "storage regimen" in two levels - baseline, 24 h to 5 days; or aging, 180 days + 25,000 thermal cycles. Adhesive luting was performed onto glass fiber-reinforced epoxy resin discs (Ø = 10 mm; thickness = 2 mm) and the bonded assemblies were subjected to cyclic fatigue tests: initial load = 200 N; step-size = 25 N (FEL) and 50 N (LD); 10,000 cycles/step; 20 Hz. Scanning electron microscopy (SEM) inspections were performed. Regarding the LD ceramic, the fatigue behavior was reduced after aging for HF_HIGH and E&P_LOW conditions, while stable performance was observed for HF_LOW and E&P_HIGH. Regarding the FEL results, aging negatively affected HF_HIGH, E&P_HIGH, and E&P_LOW, being that only the HF_LOW condition presented a stable behavior. The failure initiated from defects on the etched surface of the ceramics, where the cross-sectional analysis commonly revealed unfilled areas. Long-term aging might induce a decrease in mechanical behavior. The 'ceramic microstructure/surface conditioning/resin cement viscosity relationships' modulate the fatigue performance of lithium disilicate and feldspathic glass-ceramics.


Assuntos
Colagem Dentária , Cimentos de Resina , Propriedades de Superfície , Viscosidade , Estudos Transversais , Teste de Materiais , Condicionamento Ácido do Dente/métodos , Ácido Fluorídrico , Cerâmica , Porcelana Dentária , Análise do Estresse Dentário
2.
J Mech Behav Biomed Mater ; 126: 104989, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34864398

RESUMO

This study evaluated the influence of ceramic surface conditioning and storage regimen (baseline vs. aging) on the fatigue performance of simplified lithium disilicate glass-ceramic restorations. A total of 90 ceramic discs (Ø= 10 mm; thickness= 1.0 mm) were allocated into 6 groups (n= 15), considering 2 factors: "ceramic surface treatment" - CA (only silane-based coupling agent, Monobond N), HF (5% hydrofluoric acid etching), or HF+CA (5% HF acid etching plus silane-based coupling agent); and "storage regimen" - baseline (24 hours - 5 days of distilled water at 37 °C), or long-term aging (180 days of distilled water at 37 °C + 25,000 thermal cycles). After intaglio ceramic conditioning, adhesive bonding (Multilink N) was performed onto epoxy resin discs (Ø= 10 mm; thickness= 2.5 mm) and the bonded sets were subjected to step-stress fatigue tests (initial load: 200 N; step-size: 50 N; 10,000 cycles per step; 20 Hz). Fatigue data were analyzed using Kaplan-Meier and Weibull statistical analyses. Fractography and topography analyses were also conducted. The fatigue findings demonstrated that the performance among groups for both baseline and aging conditions maintained a tendency: the CA groups had the worst behavior (baseline: 893 N/143,667 cycles; aging: 639 N/84,179 cycles), while the surface etching with HF (baseline: 1247 N/214,333 cycles; aging: 816.67 N/128,333 cycles) and HF+CA groups (baseline: 1290 N/222,333 cycles; aging: 900 N/145,000 cycles) had no statistically significant difference between them. The aging protocol reduced the performance of all groups. The groups with better fatigue performance (HF and HF+CA) did not have statistical differences regarding structural reliability (Weibull modulus). Most failures were radial cracks from the cementation interface, except for CA aging specimens, with 27% failing from debonding. The HF etching led to noteworthy surface topographical alterations. Micromechanical interlocking resulting from HF acid etching remained prevalent in the fatigue behavior. Thus, the silane-based coupling agent (Monobond N) does not need to be applied after HF etching in terms of fatigue behavior outcomes.


Assuntos
Colagem Dentária , Silanos , Cerâmica , Porcelana Dentária , Análise do Estresse Dentário , Ácido Fluorídrico , Teste de Materiais , Reprodutibilidade dos Testes , Cimentos de Resina , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA