Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Anal Chem ; 95(22): 8505-8511, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218412

RESUMO

Ions in the ion mobility spectrometry (IMS) are mostly hydrated. A single peak in the drift time spectrum is usually generated by a mixture of ions differing in the number of attached water molecules. Under real IMS detector operating conditions, ions change their composition during movement in the drift region due to the changes in the number of water molecules attached to the ion. The impact of water vapor on the drift times of small ions at different temperatures was studied experimentally using an ion mobility spectrometer. The experiments were carried out for hydronium, ammonium, oxygen, chloride, bromide, and iodide ions. A theoretical model was developed, allowing us to calculate the effective mobility of ions for a given concentration of water vapor and temperature. The basic assumption adopted in this model was the linear dependence of the effective mobility coefficient on the mobility of ions with a certain degree of hydration. The weighting factors in this relationship are the abundances of individual types of ions. These parameters were determined by calculations based on the thermodynamics of the formation and disintegration of ionic clusters. From the known values of temperature, pressure, and humidity, the values of effective mobilities can be predicted quite accurately. The dependencies of reduced mobilities on the average degree of hydration were also determined. For these dependencies, the measurement points on the graphs are gathered along specific lines. This means that the average degree of hydration unambiguously determines the value of reduced mobility for a given type of ions.

3.
Sensors (Basel) ; 22(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957163

RESUMO

On-site detection and initial identification of chemical warfare agents (CWAs) remain difficult despite the many available devices designed for this type of analysis. Devices using well-established analytical techniques such as ion mobility spectrometry, gas chromatography coupled with mass spectrometry, or flame photometry, in addition to unquestionable advantages, also have some limitations (complexity, high unit cost, lack of selectivity). One of the emerging techniques of CWA detection is based on acoustic wave sensors, among which surface acoustic wave (SAW) devices and quartz crystal microbalances (QCM) are of particular importance. These devices allow for the construction of undemanding and affordable gas sensors whose selectivity, sensitivity, and other metrological parameters can be tailored by application of particular coating material. This review article presents the current state of knowledge and achievements in the field of SAW and QCM-based gas sensors used for the detection of blister agents as well as simulants of these substances. The scope of the review covers the detection of blister agents and their simulants only, as in the available literature no similar paper was found, in contrast to the detection of nerve agents. The article includes description of the principles of operation of acoustic wave sensors, a critical review of individual studies and solutions, and discusses development prospects of this analytical technique in the field of blister agent detection.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Vesícula , Substâncias para a Guerra Química/análise , Humanos , Técnicas de Microbalança de Cristal de Quartzo , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...