Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 23(6): 782-787, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481360

RESUMO

The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ9-tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.


Assuntos
Envelhecimento/psicologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Envelhecimento Cognitivo/psicologia , Disfunção Cognitiva/psicologia , Espinhas Dendríticas/efeitos dos fármacos , Dronabinol/farmacologia , Hipocampo/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Endocanabinoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Código das Histonas/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/genética , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
2.
Mech Ageing Dev ; 150: 55-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26278494

RESUMO

Previous studies have demonstrated that the endocannabinoid system significantly influences the progression of brain ageing, and the hippocampus is one of the brain regions most vulnerable to ageing and neurodegeneration. We have further examined age-related changes in the hippocampal endocannabinoid system by measuring the levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in young and old mice from two different mouse strains. We found a decrease in 2-AG but not AEA levels in aged mice. In order to identify the cause for 2-AG level changes, we investigated the levels of several enzymes that contribute to synthesis and degradation of 2-AG in the hippocampus. We found a selective decrease in DAGLα mRNA and protein levels as well as an elevated MAGL activity during ageing. We hypothesize that the observed decrease of 2-AG levels is probably caused by changes in DAGLα expression and MAGL activity. This finding can contribute to the existing knowledge about the processes underlying selective vulnerability of the hippocampus to ageing and age-related neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Hipocampo/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Envelhecimento/patologia , Animais , Hipocampo/patologia , Hipocampo/fisiopatologia , Lipase Lipoproteica/metabolismo , Camundongos
3.
Mech Ageing Dev ; 134(9): 391-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23954857

RESUMO

Early onset of age-related changes in the brain of cannabinoid 1 receptor knockout (Cnr1(-/-)) mice suggests that cannabinoid 1 (CB1) receptor activity significantly influences the progression of brain aging. In the present study we show that lack of CB1 receptors leads to a significant increase in lipofuscin accumulation and a reduced expression and activity of cathepsin D, lysosomal protease implicated in the degradation of damaged macromolecules, in the hippocampus of 12-month-old mice. The impaired clearance of damaged macromolecules due to the low cathepsin D levels and not enhanced oxidative stress may be responsible for the lipofuscin accumulation because macromolecule oxidation levels were comparable between the genotypes within the same age group. The altered levels of autophagy markers p62 and LC3-II suggest that autophagy is upregulated in CB1 knockout mice. Increased autophagic flux in the absence of CB1 receptors is probably a compensatory mechanism to partially counteract decreased lysosomal degradation capacity. Together, these results suggest that CB1 receptor activity affects lysosomal activity, degradation of damaged macromolecules and thus it may influence the course and onset of brain aging.


Assuntos
Catepsina D/metabolismo , Hipocampo/metabolismo , Lipofuscina/metabolismo , Receptor CB1 de Canabinoide/genética , Envelhecimento , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Endocanabinoides/metabolismo , Feminino , Inflamação , Peroxidação de Lipídeos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estresse Oxidativo , Oxigênio/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Distribuição Tecidual
4.
Neurobiol Aging ; 33(1): 200.e11-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20724033

RESUMO

Genetic deletion of the cannabinoid 1 (CB1) receptor leads to an early onset of learning and memory impairment. In the present study we asked whether the lack of CB1 receptors accelerates aging in general or is selective for cognitive functions. We therefore compared the onset and dynamics of age-dependent changes in social memory, locomotor activity, hearing ability, and in the histopathology of peripheral organs between wild-type and Cnr1 knockout (Cnr1(-/-)) mice. We observed deficits in social memory already in 3-month-old Cnr1(-/-) mice. In contrast, wild-type animals showed such deficits at the age of 6 months. Sensory and motor functions were similar between the genotypes. Thus, hearing loss for higher frequencies and the development of hypomotility showed a similar age-dependent course. In the periphery we detected an early onset of aging-like histological changes in the skin, but not in other organs. We conclude that the lack of CB1 receptor does not induce accelerated aging in general, but induces changes in cognitive function and in skin structure that resemble those associated with aging.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Cognição , Deleção de Genes , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/fisiologia , Envelhecimento da Pele/genética , Envelhecimento da Pele/patologia , Pele/patologia , Envelhecimento/genética , Animais , Feminino , Audição , Masculino , Camundongos , Camundongos Knockout , Atividade Motora
5.
Proc Natl Acad Sci U S A ; 108(27): 11256-61, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690345

RESUMO

Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Animais , Encéfalo/citologia , Contagem de Células , Feminino , Expressão Gênica , Hipocampo/citologia , Hipocampo/fisiologia , Interleucina-6/genética , Interleucina-6/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética , Convulsões/patologia , Convulsões/fisiopatologia , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...