Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 192: 115050, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37216880

RESUMO

Ocean acidification (OA) may either increase or have a neutral effect on the calcification in shrimp's exoskeleton. However, investigations on changes in the carbon composition of shrimp's exoskeletons under OA are lacking. We exposed juvenile Pacific white shrimps to target pHs of 8.0, 7.9, and 7.6 for 100 days to evaluate changes in carapace thickness, total carbon (TC), particulate organic carbon (POC), particulate inorganic carbon (PIC), calcium, and magnesium concentrations in their exoskeletons. The PIC: POC ratio of shrimp in pH 7.6 treatment was significantly higher by 175 % as compared to pH 8.0 treatment. Thickness and Ca% in pH 7.6 treatment were significantly higher as compared to pH 8.0 treatment (90 % and 65 %, respectively). This is the first direct evidence of an increased PIC: POC ratio in shrimp exoskeletons under OA. In the future, such changes in carbon composition may affect the shrimp population, ecosystem functions, and regional carbon cycle.


Assuntos
Exoesqueleto Energizado , Água do Mar , Animais , Água do Mar/química , Carbono , Ecossistema , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Dióxido de Carbono/química , Minerais , Crustáceos
2.
J Hazard Mater ; 423(Pt B): 127093, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536847

RESUMO

The major risk of microplastics in marine environments is the bioaccumulation in marine organisms. Plastic ingestion by marine organisms has been investigated and recently more attention has been given to microplastics in seafood. However, it is seldom reported the occurrence of microplastics in marine commercial dried fish products available for human consumption. Here, we report the occurrence of microplastics in 14different marine dried fish products from seven Asian countries. Microplastics were observed in most dried fish, with fibers representing ~80% of the total-microplastics. The major plastic polymers, identified using Micro-Raman spectroscopy, included polyethylene (35%), polyethylene terephthalate (26%), polystyrene (18%), polyvinyl chloride (12%), and polypropylene (9%). The highest count, in either per individual (1.92 ± 0.12) or per gram of dried fish (0.56 ± 0.03), were found in Etrumeus micropus from Japan. Marine dried fish, which are typically eaten whole, may contribute to the ingestion of microplastics by humans, posing potential health risks especially in Asian countries. Further studies are needed to identify the occurrence of smaller sized microplastics and nanoplastics and their potential health impacts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Humanos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...