Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 29(7): 1153-1164, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36527679

RESUMO

One of the prospective sequelae of periodontal disease (PD), chronic inflammation of the oral mucosa, is the development of inflammatory gastrointestinal (GI) disorders due to the amplification and expansion of the oral pathobionts. In addition, chronic inflammatory diseases related to the GI tract, which include inflammatory bowel disease (IBD), can lead to malignancy susceptibility in the colon of both animals and humans. Recent studies suggest that dysbiosis of the oral microbiota can alter the microbial composition in relative abundance or diversity of the distal gut, leading to the progression of digestive carcinogenesis. The link between PD and specific GI disorders is also closely associated with the migration and colonization of periodontal pathogens and the subsequent microbe-reactive T cell induction within the intestines. In this review, an in-depth examination of this relationship and the accessibility of different mouse models of IBD and PD may shed light on the current dogma. As such, oral microbiota dysbiosis involving specific bacteria, including Fusobacterium nucleatum and Porphyromonas gingivalis, can ultimately lead to gut malignancies. Further understanding the precise mechanism(s) of the oral-gut microbial axis in PD, IBD, and colorectal cancer pathogenesis will be pivotal in diagnosis, prognosis, and future treatment.


Assuntos
Gastroenteropatias , Doenças Inflamatórias Intestinais , Doenças Periodontais , Animais , Camundongos , Humanos , Disbiose/complicações , Disbiose/microbiologia , Estudos Prospectivos , Doenças Periodontais/complicações , Gastroenteropatias/etiologia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia , Porphyromonas gingivalis
2.
Proc Natl Acad Sci U S A ; 119(40): e2208160119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161939

RESUMO

Psychological stress has been previously reported to worsen symptoms of inflammatory bowel disease (IBD). Similarly, intestinal tertiary lymphoid organs (TLOs) are associated with more severe inflammation. While there is active debate about the role of TLOs and stress in IBD pathogenesis, there are no studies investigating TLO formation in the context of psychological stress. Our mouse model of Crohn's disease-like ileitis, the SAMP1/YitFc (SAMP) mouse, was subjected to 56 consecutive days of restraint stress (RS). Stressed mice had significantly increased colonic TLO formation. However, stress did not significantly increase small or large intestinal inflammation in the SAMP mice. Additionally, 16S analysis of the stressed SAMP microbiome revealed no genus-level changes. Fecal microbiome transplantation into germ-free SAMP mice using stool from unstressed and stressed mice replicated the behavioral phenotype seen in donor mice. However, there was no difference in TLO formation between recipient mice. Stress increased the TLO formation cytokines interleukin-23 (IL-23) and IL-22 followed by up-regulation of antimicrobial peptides. SAMP × IL-23r-/- (knockout [KO]) mice subjected to chronic RS did not have increased TLO formation. Furthermore, IL-23, but not IL-22, production was increased in KO mice, and administration of recombinant IL-22 rescued TLO formation. Following secondary colonic insult with dextran sodium sulfate, stressed mice had reduced colitis on both histology and colonoscopy. Our findings demonstrate that psychological stress induces colonic TLOs through intrinsic alterations in IL-23 signaling, not through extrinsic influence from the microbiome. Furthermore, chronic stress is protective against secondary insult from colitis, suggesting that TLOs may function to improve the mucosal barrier.


Assuntos
Colite , Doença de Crohn , Animais , Citocinas , Sulfato de Dextrana/toxicidade , Dextranos , Modelos Animais de Doenças , Inflamação , Interleucina-23 , Camundongos , Camundongos Knockout , Compostos de Fenilmercúrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...