Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Biol ; 28(11): 1052-1062, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34448593

RESUMO

Current technologies allow the sequencing of microbial communities directly from the environment without prior culturing. One of the major problems when analyzing a microbial sample is to taxonomically annotate its reads to identify the species it contains. The major difficulties of taxonomic analysis are the lack of taxonomically related genomes in existing reference databases, the uneven abundance ratio of species, and sequencing errors. Microbial communities can be studied with reads clustering, a process referred to as genome binning. In this study, we present MetaProb 2 an unsupervised genome binning method based on reads assembly and probabilistic k-mers statistics. The novelties of MetaProb 2 are the use of minimizers to efficiently assemble reads into unitigs and a community detection algorithm based on graph modularity to cluster unitigs and to detect representative unitigs. The effectiveness of MetaProb 2 is demonstrated in both simulated and real datasets in comparison with state-of-art binning tools such as MetaProb, AbundanceBin, Bimeta, and MetaCluster. On real datasets, it is the only one capable of producing promising results while being parsimonious with computational resources.


Assuntos
Biologia Computacional/métodos , Metagenômica/métodos , Algoritmos , Mineração de Dados , Bases de Dados Genéticas , Aprendizado de Máquina não Supervisionado
2.
Brief Bioinform ; 22(1): 88-95, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-32577746

RESUMO

The study of microbial communities crucially relies on the comparison of metagenomic next-generation sequencing data sets, for which several methods have been designed in recent years. Here, we review three key challenges in the comparison of such data sets: species identification and quantification, the efficient computation of distances between metagenomic samples and the identification of metagenomic features associated with a phenotype such as disease status. We present current solutions for such challenges, considering both reference-based methods relying on a database of reference genomes and reference-free methods working directly on all sequencing reads from the samples.


Assuntos
Metagenômica/métodos , Microbiota/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Metagenômica/normas
3.
J Comput Biol ; 27(4): 534-549, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891535

RESUMO

Estimating the abundances of all k-mers in a set of biological sequences is a fundamental and challenging problem with many applications in biological analysis. Although several methods have been designed for the exact or approximate solution of this problem, they all require to process the entire data set, which can be extremely expensive for high-throughput sequencing data sets. Although in some applications it is crucial to estimate all k-mers and their abundances, in other situations it may be sufficient to report only frequent k-mers, which appear with relatively high frequency in a data set. This is the case, for example, in the computation of k-mers' abundance-based distances among data sets of reads, commonly used in metagenomic analyses. In this study, we develop, analyze, and test a sampling-based approach, called Sampling Algorithm for K-mErs approxIMAtion (SAKEIMA), to approximate the frequent k-mers and their frequencies in a high-throughput sequencing data set while providing rigorous guarantees on the quality of the approximation. SAKEIMA employs an advanced sampling scheme and we show how the characterization of the Vapnik-Chervonenkis dimension, a core concept from statistical learning theory, of a properly defined set of functions leads to practical bounds on the sample size required for a rigorous approximation. Our experimental evaluation shows that SAKEIMA allows to rigorously approximate frequent k-mers by processing only a fraction of a data set and that the frequencies estimated by SAKEIMA lead to accurate estimates of k-mer-based distances between high-throughput sequencing data sets. Overall, SAKEIMA is an efficient and rigorous tool to estimate k-mers' abundances providing significant speedups in the analysis of large sequencing data sets.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Biologia Computacional , Metagenoma/genética , Tamanho da Amostra
4.
J Comput Biol ; 27(2): 223-233, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31800307

RESUMO

Alignment-free classification of sequences has enabled high-throughput processing of sequencing data in many bioinformatics pipelines. Much work has been done to speed up the indexing of k-mers through hash-table and other data structures. These efforts have led to very fast indexes, but because they are k-mer based, they often lack sensitivity due to sequencing errors or polymorphisms. Spaced seeds are a special type of pattern that accounts for errors or mutations. They allow to improve the sensitivity and they are now routinely used instead of k-mers in many applications. The major drawback of spaced seeds is that they cannot be efficiently hashed and thus their usage increases substantially the computational time. In this article we address the problem of efficient spaced seed hashing. We propose an iterative algorithm that combines multiple spaced seed hashes by exploiting the similarity of adjacent hash values to efficiently compute the next hash. We report a series of experiments on HTS reads hashing, with several spaced seeds. Our algorithm can compute the hashing values of spaced seeds with a speedup in range of [3.5 × -7 × ], outperforming previous methods. Software and data sets are available at Iterative Spaced Seed Hashing.

5.
BMC Bioinformatics ; 19(Suppl 15): 441, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30497364

RESUMO

BACKGROUND: Spaced-seeds, i.e. patterns in which some fixed positions are allowed to be wild-cards, play a crucial role in several bioinformatics applications involving substrings counting and indexing, by often providing better sensitivity with respect to k-mers based approaches. K-mers based approaches are usually fast, being based on efficient hashing and indexing that exploits the large overlap between consecutive k-mers. Spaced-seeds hashing is not as straightforward, and it is usually computed from scratch for each position in the input sequence. Recently, the FSH (Fast Spaced seed Hashing) approach was proposed to improve the time required for computation of the spaced seed hashing of DNA sequences with a speed-up of about 1.5 with respect to standard hashing computation. RESULTS: In this work we propose a novel algorithm, Fast Indexing for Spaced seed Hashing (FISH), based on the indexing of small blocks that can be combined to obtain the hashing of spaced-seeds of any length. The method exploits the fast computation of the hashing of runs of consecutive 1 in the spaced seeds, that basically correspond to k-mer of the length of the run. CONCLUSIONS: We run several experiments, on NGS data from simulated and synthetic metagenomic experiments, to assess the time required for the computation of the hashing for each position in each read with respect to several spaced seeds. In our experiments, FISH can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.9x to 6.03x, depending on the structure of the spaced seeds.


Assuntos
Algoritmos , Biologia Computacional/métodos , Sequência de Bases , Metagenômica , Fatores de Tempo
6.
Algorithms Mol Biol ; 13: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588651

RESUMO

BACKGROUND: Patterns with wildcards in specified positions, namely spaced seeds, are increasingly used instead of k-mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can provide better sensitivity. Many of these applications require to compute the hashing of each position in the input sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k-mers can be rapidly computed by exploiting the large overlap between consecutive k-mers, spaced seeds hashing is usually computed from scratch for each position in the input sequence, thus resulting in slower processing. RESULTS: The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6[Formula: see text] to 5.3[Formula: see text], depending on the structure of the spaced seed. CONCLUSIONS: Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up. This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient. AVAILABILITY: The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28113780

RESUMO

Entropy, being closely related to repetitiveness and compressibility, is a widely used information-related measure to assess the degree of predictability of a sequence. Entropic profiles are based on information theory principles, and can be used to study the under-/over-representation of subwords, by also providing information about the scale of conserved DNA regions. Here, we focus on the algorithmic aspects related to entropic profiles. In particular, we propose linear time algorithms for their computation that rely on suffix-based data structures, more specifically on the truncated suffix tree (TST) and on the enhanced suffix array (ESA). We performed an extensive experimental campaign showing that our algorithms, beside being faster, make it possible the analysis of longer sequences, even for high degrees of resolution, than state of the art algorithms.


Assuntos
Algoritmos , Biologia Computacional/métodos , Entropia , Análise de Sequência de DNA/métodos , Animais , DNA/genética , Humanos
8.
BMC Genomics ; 18(Suppl 10): 917, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29244002

RESUMO

BACKGROUND: In recent years several different fields, such as ecology, medicine and microbiology, have experienced an unprecedented development due to the possibility of direct sequencing of microbioimic samples. Among problems that researchers in the field have to deal with, taxonomic classification of metagenomic reads is one of the most challenging. State of the art methods classify single reads with almost 100% precision. However, very often, the performance in terms of recall falls at about 50%. As a consequence, state-of-the-art methods are indeed capable of correctly classify only half of the reads in the sample. How to achieve better performances in terms of overall quality of classification remains a largely unsolved problem. RESULTS: In this paper we propose a method for metagenomics CLassification Improvement with Overlapping Reads (CLIOR), that exploits the information carried by the overlapping reads graph of the input read dataset to improve recall, f-measure, and the estimated abundance of species. In this work, we applied CLIOR on top of the classification produced by the classifier Clark-l. Experiments on simulated and synthetic metagenomes show that CLIOR can lead to substantial improvement of the recall rate, sometimes doubling it. On average, on simulated datasets, the increase of recall is paired with an higher precision too, while on synthetic datasets it comes at expenses of a small loss of precision. On experiments on real metagenomes CLIOR is able to assign many more reads while keeping the abundance ratios in line with previous studies. CONCLUSIONS: Our results showed that with CLIOR is possible to boost the recall of a state-of-the-art metagenomic classifier by inferring and/or correcting the assignment of reads with missing or erroneous labeling. CLIOR is not restricted to the reads classification algorithm used in our experiments, but it may be applied to other methods too. Finally, CLIOR does not need large computational resources, and it can be run on a laptop.


Assuntos
Metagenômica , Estatística como Assunto/métodos , Humanos
9.
Bioinformatics ; 32(17): i567-i575, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587676

RESUMO

MOTIVATION: Sequencing technologies allow the sequencing of microbial communities directly from the environment without prior culturing. Taxonomic analysis of microbial communities, a process referred to as binning, is one of the most challenging tasks when analyzing metagenomic reads data. The major problems are the lack of taxonomically related genomes in existing reference databases, the uneven abundance ratio of species and the limitations due to short read lengths and sequencing errors. RESULTS: MetaProb is a novel assembly-assisted tool for unsupervised metagenomic binning. The novelty of MetaProb derives from solving a few important problems: how to divide reads into groups of independent reads, so that k-mer frequencies are not overestimated; how to convert k-mer counts into probabilistic sequence signatures, that will correct for variable distribution of k-mers, and for unbalanced groups of reads, in order to produce better estimates of the underlying genome statistic; how to estimate the number of species in a dataset. We show that MetaProb is more accurate and efficient than other state-of-the-art tools in binning both short reads datasets (F-measure 0.87) and long reads datasets (F-measure 0.97) for various abundance ratios. Also, the estimation of the number of species is more accurate than MetaCluster. On a real human stool dataset MetaProb identifies the most predominant species, in line with previous human gut studies. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/samu661/metaprob CONTACTS: cinzia.pizzi@dei.unipd.it or comin@dei.unipd.it SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica , Modelos Estatísticos , Algoritmos , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Software
10.
Algorithms Mol Biol ; 11: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27103940

RESUMO

BACKGROUND: Measuring sequence similarity is central for many problems in bioinformatics. In several contexts alignment-free techniques based on exact occurrences of substrings are faster, but also less accurate, than alignment-based approaches. Recently, several studies attempted to bridge the accuracy gap with the introduction of approximate matches in the definition of composition-based similarity measures. RESULTS: In this work we present MissMax, an exact algorithm for the computation of the longest common substring with mismatches between each suffix of a sequence x and a sequence y. This collection of statistics is useful for the computation of two similarity measures: the longest and the average common substring with k mismatches. As a further contribution we provide a "relaxed" version of MissMax that does not guarantee the exact solution, but it is faster in practice and still very precise.

11.
Algorithms Mol Biol ; 6: 5, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21429203

RESUMO

BACKGROUND: The discovery of surprisingly frequent patterns is of paramount interest in bioinformatics and computational biology. Among the patterns considered, those consisting of pairs of solid words that co-occur within a prescribed maximum distance -or gapped factors- emerge in a variety of contexts of DNA and protein sequence analysis. A few algorithms and tools have been developed in connection with specific formulations of the problem, however, none can handle comprehensively each of the multiple ways in which the distance between the two terms in a pair may be defined. RESULTS: This paper presents efficient algorithms and tools for the extraction of all pairs of words up to an arbitrarily large length that co-occur surprisingly often in close proximity within a sequence. Whereas the number of such pairs in a sequence of n characters can be Θ(n4), it is shown that an exhaustive discovery process can be carried out in O(n2) or O(n3), depending on the way distance is measured. This is made possible by a prudent combination of properties of pattern maximality and monotonicity of scores, which lead to reduce the number of word pairs to be weighed explicitly, while still producing also the scores attained by any of the pairs not explicitly considered. We applied our approach to the discovery of spaced dyads in DNA sequences. CONCLUSIONS: Experiments on biological datasets prove that the method is effective and much faster than exhaustive enumeration of candidate patterns. Software is available freely by academic users via the web interface at http://bcb.dei.unipd.it:8080/dyweb.

12.
Artigo em Inglês | MEDLINE | ID: mdl-21071798

RESUMO

Position weight matrices are an important method for modeling signals or motifs in biological sequences, both in DNA and protein contexts. In this paper, we present fast algorithms for the problem of finding significant matches of such matrices. Our algorithms are of the online type, and they generalize classical multipattern matching, filtering, and superalphabet techniques of combinatorial string matching to the problem of weight matrix matching. Several variants of the algorithms are developed, including multiple matrix extensions that perform the search for several matrices in one scan through the sequence database. Experimental performance evaluation is provided to compare the new techniques against each other as well as against some other online and index-based algorithms proposed in the literature. Compared to the brute-force O(mn) approach, our solutions can be faster by a factor that is proportional to the matrix length m. Our multiple-matrix filtration algorithm had the best performance in the experiments. On a current PC, this algorithm finds significant matches (p = 0.0001) of the 123 JASPAR matrices in the human genome in about 18 minutes.


Assuntos
Algoritmos , Biologia Computacional/métodos , Reconhecimento Automatizado de Padrão/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos , DNA/química , Humanos , Proteínas/química
13.
Bioinformatics ; 25(23): 3181-2, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19773334

RESUMO

UNLABELLED: MOODS (MOtif Occurrence Detection Suite) is a software package for matching position weight matrices against DNA sequences. MOODS implements state-of-the-art online matching algorithms, achieving considerably faster scanning speed than with a simple brute-force search. MOODS is written in C++, with bindings for the popular BioPerl and Biopython toolkits. It can easily be adapted for different purposes and integrated into existing workflows. It can also be used as a C++ library. AVAILABILITY: The package with documentation and examples of usage is available at http://www.cs.helsinki.fi/group/pssmfind. The source code is also available under the terms of a GNU General Public License (GPL).


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Sequência de Bases , Matrizes de Pontuação de Posição Específica
14.
Nucleic Acids Res ; 33(15): e135, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16141193

RESUMO

The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA/métodos , Software , Algoritmos , DNA Fúngico/química , Humanos , Internet , Regiões Promotoras Genéticas , Leveduras/genética
15.
BMC Bioinformatics ; 6: 121, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15904489

RESUMO

BACKGROUND: Searching for approximate patterns in large promoter sequences frequently produces an exceedingly high numbers of results. Our aim was to exploit biological knowledge for definition of a sheltered search space and of appropriate search parameters, in order to develop a method for identification of a tractable number of sequence motifs. RESULTS: Novel software (COOP) was developed for extraction of sequence motifs, based on clustering of exact or approximate patterns according to the frequency of their overlapping occurrences. Genomic sequences of 1 Kb upstream of 91 genes differentially expressed and/or encoding proteins with relevant function in adult human retina were analyzed. Methodology and results were tested by analysing 1,000 groups of putatively unrelated sequences, randomly selected among 17,156 human gene promoters. When applied to a sample of human promoters, the method identified 279 putative motifs frequently occurring in retina promoters sequences. Most of them are localized in the proximal portion of promoters, less variable in central region than in lateral regions and similar to known regulatory sequences. COOP software and reference manual are freely available upon request to the Authors. CONCLUSION: The approach described in this paper seems effective for identifying a tractable number of sequence motifs with putative regulatory role.


Assuntos
Biologia Computacional/métodos , Regiões Promotoras Genéticas , Algoritmos , Motivos de Aminoácidos , Análise por Conglomerados , Sequência Conservada , Bases de Dados Genéticas , Bases de Dados de Proteínas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Humano , Humanos , Dados de Sequência Molecular , Elementos Reguladores de Transcrição , Sequências Reguladoras de Ácido Nucleico , Elementos de Resposta , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...