Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(3): 151442, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986342

RESUMO

Urine-derived renal epithelial cells (URECs) are highly voided after kidney transplant and express typical kidney markers, including markers of kidney epithelial progenitor cells. Recently URECs have shown promising immunomodulatory properties when cultured with Peripheral Blood Mononuclear Cells (PBMCs), promoting an increase in the T regulatory cells. In vivo, kidney cells are highly exposed to damage associated molecules during both acute and chronic kidney injury. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most -known early marker of acute and chronic kidney damage. However, its role on the evolution of renal damage has not yet been fully described, nor has its impact on the characteristics of renal-derived cells during in vitro culture. The aim of this study is to investigate the effect of NGAL on the characteristics of URECs isolated after kidney transplant, by exposing these cells to the treatment with NGAL during in vitro culture and evaluating its effect on UREC viability, proliferation, and immunomodulatory potential. The exposure of URECs to NGAL reduced their viability and proliferative capacity, promoting the onset of apoptosis. The immunomodulatory properties of URECs were partially inhibited by NGAL, without affecting the increase of Treg cells observed during UREC-PBMCs coculture. These results suggest that the exposure to NGAL may compromise some features of kidney stem and specialized cell types, reducing their viability, increasing apoptosis, and partially altering their immunomodulatory properties. Thus, NGAL could represent a target for approaches acting on its inhibition or reduction to improve functional recovery.

2.
J Pharm Biomed Anal ; 246: 116182, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772202

RESUMO

Advanced therapy medicinal products (ATMP) are complex medicines based on gene therapy, somatic cell therapy, and tissue engineering. These products are rapidly arising as novel and promising therapies for a wide range of different clinical applications. The process for the development of well-established ATMPs is challenging. Many issues must be considered from raw material, manufacturing, safety, and pricing to assure the quality of ATMPs and their implementation as innovative therapeutic tools. Among ATMPs, cell-based ATMPs are drugs altogether. As for standard drugs, technologies for quality control, and non-invasive isolation and production of cell-based ATMPs are then needed to ensure their rapidly expanding applications and ameliorate safety and standardization of cell production. In this review, emerging approaches and technologies for quality control of innovative cell-based ATMPs are described. Among new techniques, microfluid-based systems show advantages related to their miniaturization, easy implementation in analytical process and automation which allow for the standardization of the final product.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Engenharia Tecidual , Animais , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/normas , Terapia Genética/métodos , Terapia Genética/normas , Controle de Qualidade , Engenharia Tecidual/métodos , Engenharia Tecidual/normas
3.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259432

RESUMO

Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 µM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers.

4.
Cells ; 12(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371100

RESUMO

Kidney transplantation is a lifesaving procedure for patients with end-stage kidney disease (ESKD). Organs derived from donation after cardiac death (DCD) are constantly increasing; however, DCD often leads to ischaemia-reperfusion (IR) and Acute Kidney Injury (AKI) events. These phenomena increase kidney cell turnover to replace damaged cells, which are voided in urine. Urine-derived renal epithelial cells (URECs) are rarely present in the urine of healthy subjects, and their loss has been associated with several kidney disorders. The present study aimed to characterize the phenotype and potential applications of URECs voided after transplant. The results indicate that URECs are highly proliferating cells, expressing several kidney markers, including markers of kidney epithelial progenitor cells. Since the regulation of the immune response is crucial in organ transplantation and new immunoregulatory strategies are needed, UREC immunomodulatory properties were investigated. Co-culture with peripheral blood mononuclear cells (PBMCs) revealed that URECs reduced PBMC apoptosis, inhibited lymphocyte proliferation, increased T regulatory (Treg) cells and reduced T helper 1 (Th1) cells. URECs from transplanted patients represent a promising cell source for the investigation of regenerative processes occurring in kidneys, and for cell-therapy applications based on the regulation of the immune response.


Assuntos
Injúria Renal Aguda , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Biomarcadores/metabolismo , Imunidade , Células Epiteliais/metabolismo
5.
Biomolecules ; 13(6)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371551

RESUMO

Oxidative stress (OS) occurs when the production of reactive oxygen species (ROS) is not balanced by the body's antioxidant defense system. OS can profoundly affect cellular health and function. ROS can have a profound negative impact on cells that undergo a predestined and time-regulated process of proliferation or differentiation, such as perinatal stem cells. Due to the large-scale employment of these immunotolerant stem cells in regenerative medicine, it is important to reduce OS to prevent them from losing function and increase their application in the regenerative medicine field. This goal can be achieved through a variety of strategies, such as the use of antioxidants and other compounds that can indirectly modulate the antioxidant defense system by enhancing cellular stress response pathways, including autophagy and mitochondrial function, thereby reducing ROS levels. This review aims to summarize information regarding OS mechanisms in perinatal stem cells and possible strategies for reducing their deleterious effects.


Assuntos
Antioxidantes , Medicina Regenerativa , Gravidez , Feminino , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Diferenciação Celular
6.
J Clin Med ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176548

RESUMO

Hemodialysis (HD) is known to trigger a chronic inflammatory status, affecting the innate and acquired immune response. This study was aimed at a comparative analysis of immune cell subsets, proliferation, and apoptosis in subjects receiving chronic HD treatment with respect to a healthy control. Regardless of the dialysis filter used, we observed a reshaping of the acquired immune component both with respect to healthy patients and between the various sessions of dialysis treatment, with an impairment of CD3 cells, along with an increase in CD4 and CD8 cell populations producing pro-inflammatory factors such as IL-17 and IFN-gamma. The population of B cells, monocytes and NK cells were not impaired by the dialysis procedure. These results confirmed the high impact of the HD treatment on the patient's immune system, underlying the imbalance of T cell counterparts.

7.
Bioengineering (Basel) ; 10(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36829683

RESUMO

Type 1 diabetes mellitus (T1DM) is a complex metabolic disease characterized by a massive loss of insulin-producing cells due to an autoimmune reaction. Currently, daily subcutaneous administration of exogenous insulin is the only effective treatment. Therefore, in recent years considerable interest has been given to stem cell therapy and in particular to the use of three-dimensional (3D) cell cultures to better reproduce in vivo conditions. The goal of this study is to provide a reliable cellular model that could be investigated for regenerative medicine applications for the replacement of insulin-producing cells in T1DM. To pursue this aim we create a co-culture spheroid of amniotic epithelial cells (AECs) and Wharton's jelly mesenchymal stromal cells (WJ-MSCs) in a one-to-one ratio. The resulting co-culture spheroids were analyzed for viability, extracellular matrix production, and hypoxic state in both early- and long-term cultures. Our results suggest that co-culture spheroids are stable in long-term culture and are still viable with a consistent extracellular matrix production evaluated with immunofluorescence staining. These findings suggest that this co-culture may potentially be differentiated into endo-pancreatic cells for regenerative medicine applications in T1DM.

8.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829691

RESUMO

The neoplastic Hodgkin-Reed-Sternberg (HRS) cells in Hodgkin lymphoma (HL) represent only 1-10% of cells and are surrounded by an inflammatory microenvironment. The HL cytokine network is a key point for the proliferation of HRS cells and for the maintenance of an advantageous microenvironment for HRS survival. In the tumor microenvironment (TME), the fibroblasts are involved in crosstalk with HRS cells. The aim of this work was to study the effect of lymphoma cell conditioned medium on a fibroblast cell population and evaluate modifications of cell morphology and proliferation. Hodgkin lymphoma-derived medium was used to obtain a population of "conditioned" fibroblasts (WS-1 COND). Differences in biophysical parameters were detected by the innovative device Celector®. Fibroblast-HL cells interactions were reproduced in 3D co-culture spheroids. WS-1 COND showed a different cellular morphology with an enlarged cytoplasm and enhanced metabolism. Area and diameter cell values obtained by Celector® measurement were increased. Co-culture spheroids created with WS-1 COND showed a tighter aggregation than those with non-conditioned WS-1. The presence of soluble factors derived from HRS cells in the conditioned medium was adequate for the proliferation of fibroblasts and conditioned fibroblasts in a 3D HL model allowed to develop a representative model of the in vivo TME.

9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498923

RESUMO

Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Geleia de Wharton , Gravidez , Feminino , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Cordão Umbilical , Transplante de Células-Tronco
10.
J Clin Med ; 11(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956034

RESUMO

Platelet-rich plasma (PRP) is increasingly used for the intra-articular treatment of knee osteoarthritis (OA). However, clinical studies on PRP injections reported controversial results. Bone marrow edema (BME) can cause symptoms by affecting the subchondral bone and it is not targeted by intra-articular treatments. The aim of this study was to investigate if the presence of BME can influence the outcome of intra-articular PRP injections in knee OA patients. A total of 201 patients were included in the study, 80 with and 121 without BME at the baseline MRI. BME area and site were evaluated, and BME was graded using the Whole-Organ Magnetic Resonance Imaging Score (WORMS). Patients were assessed with International Knee Documentation Committee (IKDC) score Knee injury and Osteoarthritis Outcome Score (KOOS) subscales, the EuroQol-Visual Analogue Scale (EQ-VAS), and the Tegner score at baseline, 2, 6, and 12 months. Overall, the presence of BME did not influence the clinical results of intra-articular PRP injections in these patients treated for knee OA. Patients with BME presented a similar failure rate and clinical improvement after PRP treatment compared to patients without BME. The area and site of BME did not affect clinical outcomes. However, patients with a higher BME grade had a higher failure rate.

11.
J Clin Med ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268327

RESUMO

Cell culture conditions influence several biological and biochemical features of stem cells (SCs), including the membrane lipid profile, thus limiting the use of SCs for cell therapy approaches. The present study aims to investigate whether the in vitro culture may alter the membrane fatty acid signature of human Amniotic Epithelial Cells (hAECs). The analysis of the membrane fatty acid composition of hAECs cultured in basal medium showed a loss in polyunsaturated fatty acids (PUFA), in particular in omega-6 (ω-6) content, compared to freshly isolated hAECs. The addition to the basal culture medium of a chemically defined and animal-free tailored lipid supplement, namely Refeed®, partially restored the membrane fatty acid signature of hAECs. Although the amelioration of the membrane composition did not prolong hAECs culture lifespan, Refeed® influenced cell morphology, counteracted the onset of senescence, and increased the migratory capacity as well as the ability of hAECs to inhibit Peripheral Blood Mononuclear Cell (PBMC) proliferation. This study provides new information on hAEC features during culture passages and demonstrates that the maintenance of the membrane fatty acid signature preserved higher cell quality during in vitro expansion, suggesting the use of lipid supplementation for SC expansion in cell-based therapies.

12.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209410

RESUMO

The use of stem cells for regenerative applications and immunomodulatory effect is increasing. Amniotic epithelial cells (AECs) possess embryonic-like proliferation ability and multipotent differentiation potential. Despite the simple isolation procedure, inter-individual variability and different isolation steps can cause differences in isolation yield and cell proliferation ability, compromising reproducibility observations among centers and further applications. We investigated the use of a new technology as a diagnostic tool for quality control on stem cell isolation. The instrument label-free separates cells based on their physical characteristics and, thanks to a micro-camera, generates a live fractogram, the fingerprint of the sample. Eight amniotic membranes were processed by trypsin enzymatic treatment and immediately analysed. Two types of profile were generated: a monomodal and a bimodal curve. The first one represented the unsuccessful isolation with all recovered cell not attaching to the plate; while for the second type, the isolation process was successful, but we discovered that only cells in the second peak were alive and resulted adherent. We optimized a Quality Control (QC) method to define the success of AEC isolation using the fractogram generated. This predictive outcome is an interesting tool for laboratories and cell banks that isolate and cryopreserve fetal annex stem cells for research and future clinical applications.

13.
Antibiotics (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206190

RESUMO

Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.

14.
Stem Cells Int ; 2020: 8827038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101419

RESUMO

Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases (ARDs). This process involves physiological, structural, biochemical, and molecular changes of cells, leading to a characteristic trait referred to "senescence-associated secretory phenotype (SASP)." In particular, with aging, stem cells (SCs) in situ exhibit a diminished capacity of self-renewal and show a decline in their functionality. The identification of interventions able to prevent the accumulation of senescent SCs in the organism or to pretreat cultured multipotent mesenchymal stromal cells (MSCs) prior to employing them for cell therapy is a main purpose of medical research. Many approaches have been investigated and resulted effective to prevent or counteract SC senescence in humans, as well as other animal models. In this work, we have reviewed the chance of using a number of herb-derived products as novel tools in the treatment of cell senescence, highlighting the efficacy of these agents, often still far from being clearly understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...