Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(13): 5558-5569, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875012

RESUMO

Force fields (FFs) are an established tool for simulating large and complex molecular systems. However, parametrizing FFs is a challenging and time-consuming task that relies on empirical heuristics, experimental data, and computational data. Recent efforts aim to automate the assignment of FF parameters using pre-existing databases and on-the-fly ab initio data. In this study, we propose a graph-based force field (GB-FFs) model to directly derive parameters for the Generalized Amber Force Field (GAFF) from chemical environments and research into the influence of functional forms. Our end-to-end parametrization approach predicts parameters by aggregating the basic information in directed molecular graphs, eliminating the need for expert-defined procedures and enhances the accuracy and transferability of GAFF across a broader range of molecular complexes. Simulation results are compared to the original GAFF parametrization. In practice, our results demonstrate an improved transferability of the model, showcasing its improved accuracy in modeling intermolecular and torsional interactions, as well as improved solvation free energies. The optimization approach developed in this work is fully applicable to other nonpolarizable FFs as well as to polarizable ones.

2.
Chem Sci ; 14(44): 12554-12569, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020379

RESUMO

We introduce FENNIX (Force-Field-Enhanced Neural Network InteraXions), a hybrid approach between machine-learning and force-fields. We leverage state-of-the-art equivariant neural networks to predict local energy contributions and multiple atom-in-molecule properties that are then used as geometry-dependent parameters for physically-motivated energy terms which account for long-range electrostatics and dispersion. Using high-accuracy ab initio data (small organic molecules/dimers), we trained a first version of the model. Exhibiting accurate gas-phase energy predictions, FENNIX is transferable to the condensed phase. It is able to produce stable Molecular Dynamics simulations, including nuclear quantum effects, for water predicting accurate liquid properties. The extrapolating power of the hybrid physically-driven machine learning FENNIX approach is exemplified by computing: (i) the solvated alanine dipeptide free energy landscape; (ii) the reactive dissociation of small molecules.

3.
Chem Sci ; 14(20): 5438-5452, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234902

RESUMO

Deep-HP is a scalable extension of the Tinker-HP multi-GPU molecular dynamics (MD) package enabling the use of Pytorch/TensorFlow Deep Neural Network (DNN) models. Deep-HP increases DNNs' MD capabilities by orders of magnitude offering access to ns simulations for 100k-atom biosystems while offering the possibility of coupling DNNs to any classical (FFs) and many-body polarizable (PFFs) force fields. It allows therefore the introduction of the ANI-2X/AMOEBA hybrid polarizable potential designed for ligand binding studies where solvent-solvent and solvent-solute interactions are computed with the AMOEBA PFF while solute-solute ones are computed by the ANI-2X DNN. ANI-2X/AMOEBA explicitly includes AMOEBA's physical long-range interactions via an efficient Particle Mesh Ewald implementation while preserving ANI-2X's solute short-range quantum mechanical accuracy. The DNN/PFF partition can be user-defined allowing for hybrid simulations to include key ingredients of biosimulation such as polarizable solvents, polarizable counter ions, etc.… ANI-2X/AMOEBA is accelerated using a multiple-timestep strategy focusing on the model's contributions to low-frequency modes of nuclear forces. It primarily evaluates AMOEBA forces while including ANI-2X ones only via correction-steps resulting in an order of magnitude acceleration over standard Velocity Verlet integration. Simulating more than 10 µs, we compute charged/uncharged ligand solvation free energies in 4 solvents, and absolute binding free energies of host-guest complexes from SAMPL challenges. ANI-2X/AMOEBA average errors are discussed in terms of statistical uncertainty and appear in the range of chemical accuracy compared to experiment. The availability of the Deep-HP computational platform opens the path towards large-scale hybrid DNN simulations, at force-field cost, in biophysics and drug discovery.

4.
J Chem Theory Comput ; 19(5): 1432-1445, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36856658

RESUMO

We report the implementation of a multi-CPU and multi-GPU massively parallel platform dedicated to the explicit inclusion of nuclear quantum effects (NQEs) in the Tinker-HP molecular dynamics (MD) package. The platform, denoted Quantum-HP, exploits two simulation strategies: the Ring-Polymer Molecular Dynamics (RPMD) that provides exact structural properties at the cost of a MD simulation in an extended space of multiple replicas and the adaptive Quantum Thermal Bath (adQTB) that imposes the quantum distribution of energy on a classical system via a generalized Langevin thermostat and provides computationally affordable and accurate (though approximate) NQEs. We discuss some implementation details, efficient numerical schemes, and parallelization strategies and quickly review the GPU acceleration of our code. Our implementation allows an efficient inclusion of NQEs in MD simulations for very large systems, as demonstrated by scaling tests on water boxes with more than 200,000 atoms (simulated using the AMOEBA polarizable force field). We test the compatibility of the approach with Tinker-HP's recently introduced Deep-HP machine learning potentials module by computing water properties using the DeePMD potential with adQTB thermostatting. Finally, we show that the platform is also compatible with the alchemical free energy estimation capabilities of Tinker-HP and fast enough to perform simulations. Therefore, we study how NQEs affect the hydration free energy of small molecules solvated with the recently developed Q-AMOEBA water force field. Overall, the Quantum-HP platform allows users to perform routine quantum MD simulations of large condensed-phase systems and will help to shed new light on the quantum nature of important interactions in biological matter.

5.
J Phys Chem B ; 126(43): 8813-8826, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36270033

RESUMO

We introduce a new parametrization of the AMOEBA polarizable force field for water denoted Q-AMOEBA, for use in simulations that explicitly account for nuclear quantum effects (NQEs). This study is made possible thanks to the recently introduced adaptive Quantum Thermal Bath (adQTB) simulation technique which computational cost is comparable to classical molecular dynamics. The flexible Q-AMOEBA model conserves the initial AMOEBA functional form, with an intermolecular potential including an atomic multipole description of electrostatic interactions (up to quadrupole), a polarization contribution based on the Thole interaction model and a buffered 14-7 potential to model van der Waals interactions. It has been obtained by using a ForceBalance fitting strategy including high-level quantum chemistry reference energies and selected condensed-phase properties targets. The final Q-AMOEBA model is shown to accurately reproduce both gas-phase and condensed-phase properties, notably improving the original AMOEBA water model. This development allows the fine study of NQEs on water liquid phase properties such as the average H-O-H angle compared to its gas-phase equilibrium value, isotope effects, and so on. Q-AMOEBA also provides improved infrared spectroscopy prediction capabilities compared to AMOEBA03. Overall, we show that the impact of NQEs depends on the underlying model functional form and on the associated strength of hydrogen bonds. Since adQTB simulations can be performed at near classical computational cost using the Tinker-HP package, Q-AMOEBA can be extended to organic molecules, proteins, and nucleic acids opening the possibility for the large-scale study of the importance of NQEs in biophysics.


Assuntos
Amoeba , Água , Água/química , Termodinâmica , Simulação de Dinâmica Molecular , Eletricidade Estática
6.
J Chem Phys ; 155(10): 104108, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525824

RESUMO

The performance of different approximate algorithms for computing anharmonic features in vibrational spectra is analyzed and compared on model and more realistic systems that present relevant nuclear quantum effects. The methods considered combine approximate sampling of the quantum thermal distribution with classical time propagation and include Matsubara dynamics, path integral dynamics approaches, linearized initial value representation, and the recently introduced adaptive quantum thermal bath. A perturbative analysis of these different methods enables us to account for the observed numerical performance on prototypes for overtones and combination bands and to draw qualitatively correct trends for the numerical results obtained for Fermi resonances. Our results prove that the unequal performances of these approaches often derive from the method employed to sample initial conditions and not, as usually assumed, from the lack of coherence in the time propagation. Furthermore, as confirmed by the analysis reported in Benson and Althorpe, J. Chem. Phys. 130, 194510 (2021), we demonstrate, both via the perturbative approach and numerically, that path integral dynamics methods fail to reproduce the intensities of these anharmonic features and follow purely classical trends with respect to their temperature behavior. Finally, the remarkably accurate performance of the adaptive quantum thermal bath approach is documented and motivated.

7.
J Phys Chem Lett ; 12(34): 8285-8291, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427440

RESUMO

We demonstrate the accuracy and efficiency of a recently introduced approach to account for nuclear quantum effects (NQEs) in molecular simulations: the adaptive quantum thermal bath (adQTB). In this method, zero-point energy is introduced through a generalized Langevin thermostat designed to precisely enforce the quantum fluctuation-dissipation theorem. We propose a refined adQTB algorithm with improved accuracy and report adQTB simulations of liquid water. Through extensive comparison with reference path integral calculations, we demonstrate that it provides excellent accuracy for a broad range of structural and thermodynamic observables as well as infrared vibrational spectra. The adQTB has a computational cost comparable to that of classical molecular dynamics, enabling simulations of up to millions of degrees of freedom.

8.
J Chem Phys ; 151(11): 114114, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542021

RESUMO

The Wigner thermal density is a function of considerable interest in the area of approximate (linearized or semiclassical) quantum dynamics where it is employed to generate initial conditions for the propagation of appropriate sets of classical trajectories. In this paper, we propose an original approach to compute the Wigner density based on a generalized Langevin equation. The stochastic dynamics is nontrivial in that it contains a coordinate-dependent friction coefficient and a generalized force that couples momenta and coordinates. These quantities are, in general, not known analytically and have to be estimated via auxiliary calculations. The performance of the new sampling scheme is tested on standard model systems with highly nonclassical features such as relevant zero point energy effects, correlation between momenta and coordinates, and negative parts of the Wigner density. In its current brute force implementation, the algorithm, whose convergence can be systematically checked, is accurate and has only limited overhead compared to schemes with similar characteristics. We briefly discuss potential ways to further improve its numerical efficiency.

9.
J Chem Theory Comput ; 15(5): 2863-2880, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30939002

RESUMO

Quantum thermal bath (QTB) simulations reproduce statistical nuclear quantum effects via a Langevin equation with a colored random force. Although this approach has proven efficient for a variety of chemical and condensed-matter problems, the QTB, as many other semiclassical methods, suffers from zero-point energy leakage (ZPEL). The absence of a reliable criterion to quantify the ZPEL without resorting to demanding comparisons with path integral-based calculations has so far hindered the use of the QTB for the simulation of real systems. In this work, we establish a quantitative connection between ZPEL in the QTB framework and deviations from the quantum fluctuation-dissipation theorem (FDT) that can be monitored along the simulation. This provides a rigorous general criterion to detect and quantify the ZPEL without any a priori knowledge of the system under study. We then use this criterion to build an adaptive QTB method that strictly enforces the quantum FDT at all frequencies via an on-the-fly, spectrally resolved fine-tuning of the system-bath coupling coefficients. The validity of the adaptive approach is first demonstrated on a simple two-oscillator model. It is then applied to two more realistic problems: the description of the vibrational properties of a model aluminum crystal at low temperature and the simulation of the liquid-solid phase transition in a 13-atom neon cluster. In both systems, the standard QTB results are strongly altered by the ZPEL, which can be essentially eliminated using the adaptive approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...