Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1234925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900147

RESUMO

Aim: Wolfram Syndrome (WS) is a rare condition caused by mutations in Wfs1, with a poor prognosis and no cure. Mono-agonists targeting the incretin glucagon-like-peptide 1 (GLP-1) have demonstrated disease-modifying potential in pre-clinical and clinical settings. Dual agonists that target GLP-1 and glucose-dependent insulinotropic polypeptide (GIP-1) are reportedly more efficacious; hence, we evaluated the therapeutic potential of dual incretin agonism in a loss-of-function rat model of WS. Methods: Eight-month-old Wfs1 knock-out (KO) and wild-type control rats were continuously treated with either the dual agonist DA-CH5 or saline for four months. Glycemic profile, visual acuity and hearing sensitivity were longitudinally monitored pre-treatment, and then at 10.5 and 12 months. Pancreata and retina were harvested for immunohistological analysis. Results: DA-CH5 therapy reversed glucose intolerance in KO rats and provided lasting anti-diabetogenic protection. Treatment also reversed intra-islet alterations, including reduced endocrine islet area and ß-cell density, indicating its regenerative potential. Although no rescue effect was noted for hearing loss, visual acuity and retinal ganglion cell density were better preserved in DA-CH5-treated rats. Conclusion: We present preclinical evidence for the pleiotropic therapeutic effects of long-term dual incretin agonist treatment; effects were seen despite treatment beginning after symptom-onset, indicating reversal of disease progression. Dual incretins represent a promising therapeutic avenue for WS patients.


Assuntos
Células Secretoras de Insulina , Síndrome de Wolfram , Humanos , Ratos , Animais , Lactente , Incretinas/farmacologia , Síndrome de Wolfram/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Polipeptídeo Inibidor Gástrico
2.
PLoS One ; 17(6): e0268806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687549

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2-specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum immediately before calving. Here, we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks the interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persisted on the nasal mucosa for at least 4 hours, as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for rapid and versatile adaptation for preparing prophylactic treatments against other diseases using the defined characteristics of antibody movement into the colostrum.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Bovinos , Colostro/metabolismo , Feminino , Humanos , Gravidez , Glicoproteína da Espícula de Coronavírus
3.
Cells ; 10(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34831417

RESUMO

Wolfram syndrome (WS), also known as a DIDMOAD (diabetes insipidus, early-onset diabetes mellitus, optic nerve atrophy and deafness) is a rare autosomal disorder caused by mutations in the Wolframin1 (WFS1) gene. Previous studies have revealed that glucagon-like peptide-1 receptor agonist (GLP1 RA) are effective in delaying and restoring blood glucose control in WS animal models and patients. The GLP1 RA liraglutide has also been shown to have neuroprotective properties in aged WS rats. WS is an early-onset, chronic condition. Therefore, early diagnosis and lifelong pharmacological treatment is the best solution to control disease progression. Hence, the aim of this study was to evaluate the efficacy of the long-term liraglutide treatment on the progression of WS symptoms. For this purpose, 2-month-old WS rats were treated with liraglutide up to the age of 18 months and changes in diabetes markers, visual acuity, and hearing sensitivity were monitored over the course of the treatment period. We found that treatment with liraglutide delayed the onset of diabetes and protected against vision loss in a rat model of WS. Therefore, early diagnosis and prophylactic treatment with the liraglutide may also prove to be a promising treatment option for WS patients by increasing the quality of life.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Perda Auditiva Neurossensorial/tratamento farmacológico , Liraglutida/uso terapêutico , Degeneração Neural/tratamento farmacológico , Vias Visuais/patologia , Síndrome de Wolfram/tratamento farmacológico , Animais , Peptídeo C/metabolismo , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Perda Auditiva Neurossensorial/complicações , Liraglutida/farmacologia , Masculino , Degeneração Neural/complicações , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Fenótipo , Ratos , Vias Visuais/efeitos dos fármacos , Síndrome de Wolfram/complicações
4.
Virology ; 561: 65-68, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157565

RESUMO

The global COVID-19 pandemic caused by SARS-CoV-2 predominantly affects the elderly. Differential expression of SARS-CoV-2 entry genes may underlie the variable susceptibility in different patient groups. Here, we examined the gene expression of key SARS-CoV-2 entry factors in mucosal biopsies to delineate the roles of age and existing chronic airway disease. A significant inverse correlation between ACE2 and age and a downregulation of NRP1 in patients with airway disease were noted. These results indicate that the interplay between various factors may influence susceptibility and the disease course.


Assuntos
COVID-19/genética , COVID-19/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , SARS-CoV-2/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Biomarcadores , Criança , Pré-Escolar , Comorbidade , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Internalização do Vírus , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...