Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(25): 13730-13741, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37338458

RESUMO

The removal of organophosphorus (OP) herbicides from water has been studied using adsorptive removal, chemical oxidation, electrooxidation, enzymatic degradation, and photodegradation. The OP herbicide glyphosate (GP) is one of the most used herbicides worldwide, leading to excess GP in wastewater and soil. GP is commonly broken down in environmental conditions to compounds such as aminomethylphosphonic acid (AMPA) or sarcosine, with AMPA having a longer half-life and similar toxicity to GP. Metal-organic frameworks (MOFs) are excellent materials for purifying OP herbicides from water due to their ability to combine adsorption and photoactivity within one material. Herein, we report the use of a robust Zr-based MOF with a meta-carborane carboxylate ligand (mCB-MOF-2) to examine the adsorption and photodegradation of GP. The maximum adsorption capacity of mCB-MOF-2 for GP was determined to be 11.4 mmol/g. Non-covalent intermolecular forces between the carborane-based ligand and GP within the micropores of mCB-MOF-2 are thought to be responsible for strong binding affinity and capture of GP. After 24 h of irradiation with ultraviolet-visible (UV-vis) light, mCB-MOF-2 selectively converts 69% of GP to sarcosine and orthophosphate, following the C-P lyase enzymatic pathway and biomimetically photodegrading GP. Circumventing the production of AMPA is desirable, as it has a longer half-life and similar toxicity to GP. The exceptional adsorption capacity of GP by mCB-MOF-2 and its biomimetic photodegradation to non-toxic sarcosine make it a promising material for removing OP herbicides from water.

2.
Dalton Trans ; 51(3): 1137-1143, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34939634

RESUMO

A new unsymmetric carborane-based dicarboxylic linker provided a 1D Cu2-paddle wheel coordination polymer (2) with much higher hydrolytic stability than the corresponding 2D Cu2-paddle wheel polymer (1), obtained from a related more symmetrical carborane-based linker. Both 1 and 2 were used as efficient heterogeneous catalysts for a model aza-Michael reaction but only 2 can be reused several times without significant degradation in catalytic activity.

3.
Dalton Trans ; 50(20): 7056-7064, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33949538

RESUMO

We present a new heteroditopic ligand (3pyCCMoid) that contains the typical skeleton of a curcuminoid (CCMoid) decorated with two 3-pyridyl groups. The coordination of 3pyCCMoid with ZnII centres results in a set of novel coordination polymers (CPs) that display different architectures and dimensionalities (from 1D to 3D). Our work analyses how synthetic methods and slight changes in the reaction conditions affect the formation of the final materials. Great efforts have been devoted toward understanding the coordination entities that provide high dimensional systems, with emphasis on the characterization of 2D materials, including analyses of different types of substrates, stability and exfoliation in water. Here, we foresee the great use of CCMoids in the field of CPs and emphasize 3pyCCMoid as a new-born linker.

4.
Chem Commun (Camb) ; 57(20): 2523-2526, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33554983

RESUMO

Post-synthetic modification of a dynamic carborane-based soft porous crystal (1 ⊃ DMF) by in situ polymerization of pyrrole to polypyrrole (PPy) provided a permanently porous MOF/polypyrrole hybrid composite material that did not show the dynamic behavior of the mother MOF. Apart from stability, the introduction of conductive PPy in the composite material brings new properties to the otherwise non-conductive MOF.

5.
J Am Chem Soc ; 142(18): 8299-8311, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32337974

RESUMO

Biofuels are considered sustainable and renewable alternatives to conventional fossil fuels. Biobutanol has recently emerged as an attractive option compared to bioethanol and biodiesel, but a significant challenge in its production lies in the separation stage. The current industrial process for the production of biobutanol includes the ABE (acetone-butanol-ethanol) fermentation process from biomass; the resulting fermentation broth has a butanol concentration of no more than 2 wt% (the rest is essentially water). Therefore, the development of a cost-effective process for separation of butanol from dilute aqueous solutions is highly desirable. The use of porous materials for the adsorptive separation of ABE mixtures is considered a highly promising route, as these materials can potentially have high affinities for alcohols and low affinities for water. To date, zeolites have been tested toward this separation, but their hydrophilic nature makes them highly incompetent for this application. The use of metal-organic frameworks (MOFs) is an apparent solution; however, their low hydrolytic stabilities hinder their implementation in this application. So far, a few nanoporous zeolitic imidazolate frameworks (ZIFs) have shown excellent potential for butanol separation due to their good hydrolytic and thermal stabilities. Herein, we present a novel, porous, and hydrophobic MOF based on copper ions and carborane-carboxylate ligands, mCB-MOF-1, for butanol recovery. mCB-MOF-1 exhibits excellent stability when immersed in organic solvents, water at 90 °C for at least two months, and acidic and basic aqueous solutions. We found that, like ZIF-8, mCB-MOF-1 is non-porous to water (type II isotherm), but it has higher affinity for ethanol, butanol, and acetone compared to ZIF-8, as suggested by the shape of the vapor isotherms at the crucial low-pressure region. This is reflected in the separation of a realistic ABE mixture in which mCB-MOF-1 recovers butanol more efficiently compared to ZIF-8 at 333 K.

6.
Molecules ; 24(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484428

RESUMO

Materials that combine flexibility and open metal sites are crucial for myriad applications. In this article, we report a 2D coordination polymer (CP) assembled from CuII ions and a flexible meta-carborane-based linker [Cu2(L1)2(Solv)2]•xSolv (1-DMA, 1-DMF, and 1-MeOH; L1: 1,7-di(4-carboxyphenyl)-1,7-dicarba-closo-dodecaborane). 1-DMF undergoes an unusual example of reversible phase transition on solvent treatment (i.e., MeOH and CH2Cl2). Solvent exchange, followed by thermal activation provided a new porous phase that exhibits an estimated Brunauer-Emmett-Teller (BET) surface area of 301 m2 g-1 and is capable of a CO2 uptake of 41 cm3 g-1. The transformation is reversible and 1-DMF is reformed on addition of DMF to the porous phase. We provide evidence for the reversible process being the result of the formation/cleavage of weak but attractive B-H∙∙∙Cu interactions by a combination of single-crystal (SCXRD), powder (PXRD) X-ray diffraction, Raman spectroscopy, and DFT calculations.


Assuntos
Boranos/química , Polímeros/química , Estruturas Metalorgânicas , Porosidade
7.
J Org Chem ; 73(22): 9140-3, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18954110

RESUMO

Thionyl chloride (SOCl2) acts as halogenation reagent in its reaction with 1-[phenyl(hydroxy)methyl]-2-R-1,2-dicarba-closo-dodecaborane 1a, b but unexpectedly behaves as an oxidant for 1-[2'-pyridyl(hydroxy)methyl]-2-R-1,2-dicarba-closo-dodecaboranes 2a, b. The synthesis and characterization of all new compounds, including structure determinations of 1a, 2a, 1-[phenyl(chloro)methyl]-2-methyl-1,2-dicarba-closo-dodecaborane 3a, and 1-[2'-pyridyl(oxo)methyl]-2-methyl-1,2-dicarba-closo-dodecaboranes 4a are reported and the possible pathways are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...