Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4235, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762489

RESUMO

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Assuntos
COVID-19 , Células Endoteliais , Pulmão , Ativação de Macrófagos , SARS-CoV-2 , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , COVID-19/patologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Endoteliais/imunologia , SARS-CoV-2/fisiologia , Pulmão/virologia , Pulmão/patologia , Pulmão/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Camundongos Endogâmicos C57BL , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Camundongos Knockout , Proteínas da Matriz Extracelular
3.
J Clin Invest ; 134(4)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38127441

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells, resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of patients with LAM develop pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified EC dysfunction characterized by increased EC proliferation and migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we used an mTORC1 gain-of-function mouse model with a Tsc2 KO (Tsc2KO) specific to lung mesenchyme (Tbx4LME-Cre Tsc2fl/fl), similar to the mesenchyme-specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from mice exhibited marked transcriptomic changes despite an absence of morphological changes to the distal lung microvasculature. In contrast, 1-year-old Tbx4LME-Cre Tsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single-cell RNA-Seq of 1-year-old mouse lung cells identified paracrine ligands originating from Tsc2KO mesenchyme, which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand-EC receptor crosstalk highlights the importance of an altered mesenchymal cell/EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in patients with LAM and in Tbx4LME-Cre Tsc2fl/fl mice did not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrated dysfunctional EC responses that contributed to pulmonary vascular remodeling.


Assuntos
Linfangioleiomiomatose , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Proteínas Supressoras de Tumor , Animais , Humanos , Lactente , Camundongos , Células Endoteliais/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mesoderma/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Remodelação Vascular/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Técnicas In Vitro
4.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292817

RESUMO

Inflammation upon infectious lung injury is a double-edged sword: while tissue-infiltrating immune cells and cytokines are necessary to control infection, these same factors often aggravate injury. Full appreciation of both the sources and targets of inflammatory mediators is required to facilitate strategies to maintain antimicrobial effects while minimizing off-target epithelial and endothelial damage. Recognizing that the vasculature is centrally involved in tissue responses to injury and infection, we observed that pulmonary capillary endothelial cells (ECs) exhibit dramatic transcriptomic changes upon influenza injury punctuated by profound upregulation of Sparcl1 . Endothelial deletion and overexpression of SPARCL1 implicated this secreted matricellular protein in driving key pathophysiologic symptoms of pneumonia, which we demonstrate result from its effects on macrophage polarization. SPARCL1 induces a shift to a pro-inflammatory "M1-like" phenotype (CD86 + CD206 - ), thereby increasing associated cytokine levels. Mechanistically, SPARCL1 acts directly on macrophages in vitro to induce the pro-inflammatory phenotype via activation of TLR4, and TLR4 inhibition in vivo ameliorates inflammatory exacerbations caused by endothelial Sparcl1 overexpression. Finally, we confirmed significant elevation of SPARCL1 in COVID-19 lung ECs in comparison with those from healthy donors. Survival analysis demonstrated that patients with fatal COVID-19 had higher levels of circulating SPARCL1 protein compared to those who recovered, indicating the potential of SPARCL1 as a biomarker for prognosis of pneumonia and suggesting that personalized medicine approaches might be harnessed to block SPARCL1 and improve outcomes in high-expressing patients.

5.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870331

RESUMO

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Assuntos
Células Epiteliais Alveolares , Mecanotransdução Celular , Células Epiteliais Alveolares/metabolismo , Células Cultivadas , Pulmão , Diferenciação Celular/fisiologia , Respiração
6.
Annu Rev Pathol ; 18: 337-359, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36270292

RESUMO

The mammalian lung has an enormous environmental-epithelial interface that is optimized to accomplish the principal function of the respiratory system, gas exchange. One consequence of evolving such a large surface area is that the lung epithelium is continuously exposed to toxins, irritants, and pathogens. Maintaining homeostasis in this environment requires a delicate balance of cellular signaling between the epithelium and innate immune system. Following injury, the epithelium can be either fully regenerated in form and function or repaired by forming dysplastic scar tissue. In this review, we describe the major mechanisms of damage, regeneration, and repair within the alveolar niche where gas exchange occurs. With a focus on viral infection, we summarize recent work that has established how epithelial proliferation is arrested during infection and how the innate immune system guides its reconstitution during recovery. The consequences of these processes going awry are also considered, with an emphasis on how this will impact postpandemic pulmonary biology and medicine.


Assuntos
Lesão Pulmonar , Animais , Humanos , Pulmão , Epitélio , Regeneração , Sistema Imunitário , Homeostase , Mamíferos
7.
Nature ; 604(7904): 120-126, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355013

RESUMO

The human lung differs substantially from its mouse counterpart, resulting in a distinct distal airway architecture affected by disease pathology in chronic obstructive pulmonary disease. In humans, the distal branches of the airway interweave with the alveolar gas-exchange niche, forming an anatomical structure known as the respiratory bronchioles. Owing to the lack of a counterpart in mouse, the cellular and molecular mechanisms that govern respiratory bronchioles in the human lung remain uncharacterized. Here we show that human respiratory bronchioles contain a unique secretory cell population that is distinct from cells in larger proximal airways. Organoid modelling reveals that these respiratory airway secretory (RAS) cells act as unidirectional progenitors for alveolar type 2 cells, which are essential for maintaining and regenerating the alveolar niche. RAS cell lineage differentiation into alveolar type 2 cells is regulated by Notch and Wnt signalling. In chronic obstructive pulmonary disease, RAS cells are altered transcriptionally, corresponding to abnormal alveolar type 2 cell states, which are associated with smoking exposure in both humans and ferrets. These data identify a distinct progenitor in a region of the human lung that is not found in mouse that has a critical role in maintaining the gas-exchange compartment and is altered in chronic lung disease.


Assuntos
Bronquíolos , Furões , Células-Tronco Multipotentes , Alvéolos Pulmonares , Animais , Bronquíolos/citologia , Linhagem da Célula , Humanos , Pulmão/patologia , Camundongos , Células-Tronco Multipotentes/citologia , Alvéolos Pulmonares/citologia , Doença Pulmonar Obstrutiva Crônica
8.
Proc Natl Acad Sci U S A ; 113(51): 14805-14810, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27911843

RESUMO

The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αß+ and γδ+ intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling-weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages.


Assuntos
Elementos Facilitadores Genéticos , Microbioma Gastrointestinal , Intestinos/microbiologia , Linfócitos Intraepiteliais/microbiologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem da Célula , Cromatina/química , Cromatina/metabolismo , Vida Livre de Germes , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
9.
Nature ; 534(7606): 263-6, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279225

RESUMO

Immunoglobulin A (IgA), the major class of antibody secreted by the gut mucosa, is an important contributor to gut barrier function. The repertoire of IgA bound to gut bacteria reflects both T-cell-dependent and -independent pathways, plus glycans present on the antibody's secretory component. Human gut bacterial taxa targeted by IgA in the setting of barrier dysfunction are capable of producing intestinal pathology when isolated and transferred to gnotobiotic mice. A complex reorientation of gut immunity occurs as infants transition from passively acquired IgA present in breast milk to host-derived IgA. How IgA responses co-develop with assembly of the microbiota during this period remains poorly understood. Here, we (1) identify a set of age-discriminatory bacterial taxa whose representations define a program of microbiota assembly and maturation during the first 2 postnatal years that is shared across 40 healthy twin pairs in the USA; (2) describe a pattern of progression of gut mucosal IgA responses to bacterial members of the microbiota that is highly distinctive for family members (twin pairs) during the first several postnatal months then generalizes across pairs in the second year; and (3) assess the effects of zygosity, birth mode, and breast feeding. Age-associated differences in these IgA responses can be recapitulated in young germ-free mice, colonized with faecal microbiota obtained from two twin pairs at 6 and 18 months of age, and fed a sequence of human diets that simulate the transition from milk feeding to complementary foods. Most of these responses were robust to diet, suggesting that 'intrinsic' properties of community members play a dominant role in dictating IgA responses. The approach described can be used to define gut mucosal immune development in health and disease states and to help discover ways of repairing or preventing perturbations in this facet of host immunity.


Assuntos
Envelhecimento/imunologia , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Modelos Animais , Gêmeos , Animais , Aleitamento Materno , Pré-Escolar , Dieta , Transplante de Microbiota Fecal , Feminino , Voluntários Saudáveis , Humanos , Lactente , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desmame
10.
J Biol Chem ; 290(20): 12630-49, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25795776

RESUMO

The adaptive immune response to the human gut microbiota consists of a complex repertoire of antibodies interacting with a broad range of taxa. Fusing intestinal lamina propria lymphocytes from mice monocolonized with Bacteroides thetaiotaomicron to a myeloma fusion partner allowed us to recover hybridomas that captured naturally primed, antigen-specific antibody responses representing multiple isotypes, including IgA. One of these hybridomas, 260.8, produced a monoclonal antibody that recognizes an epitope specific for B. thetaiotaomicron isolates in a large panel of hospital- and community-acquired Bacteroides. Whole genome transposon mutagenesis revealed a 19-gene locus, involved in LPS O-antigen polysaccharide synthesis and conserved among multiple B. thetaiotaomicron isolates, that is required for 260.8 epitope expression. Mutants in this locus exhibited marked fitness defects in vitro during growth in rich medium and in gnotobiotic mice colonized with defined communities of human gut symbionts. Expression of the 260.8 epitope was sustained during 10 months of daily passage in vitro and during 14 months of monocolonization of gnotobiotic wild-type, Rag1-/-, or Myd88-/- mice. Comparison of gnotobiotic Rag1-/- mice with and without subcutaneous 260.8 hybridomas disclosed that this IgA did not affect B. thetaiotaomicron population density or suppress 260.8 epitope production but did affect bacterial gene expression in ways emblematic of a diminished host innate immune response. Our study illustrates an approach for (i) generating diagnostic antibodies, (ii) characterizing IgA responses along a continuum of specificity/degeneracy that defines the IgA repertoire to gut symbionts, and (iii) identifying immunogenic epitopes that affect competitiveness and help maintain host-microbe mutualism.


Assuntos
Anticorpos Antibacterianos/imunologia , Bacteroides/imunologia , Epitopos/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Animais , Anticorpos Antibacterianos/genética , Bacteroides/genética , Elementos de DNA Transponíveis , Epitopos/genética , Loci Gênicos/imunologia , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Mutagênese , Mutação , Antígenos O/genética , Antígenos O/imunologia , Especificidade da Espécie
11.
Sci Transl Med ; 7(276): 276ra24, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25717097

RESUMO

To gain insights into the interrelationships among childhood undernutrition, the gut microbiota, and gut mucosal immune/barrier function, we purified bacterial strains targeted by immunoglobulin A (IgA) from the fecal microbiota of two cohorts of Malawian infants and children. IgA responses to several bacterial taxa, including Enterobacteriaceae, correlated with anthropometric measurements of nutritional status in longitudinal studies. The relationship between IgA responses and growth was further explained by enteropathogen burden. Gnotobiotic mouse recipients of an IgA(+) bacterial consortium purified from the gut microbiota of undernourished children exhibited a diet-dependent enteropathy characterized by rapid disruption of the small intestinal and colonic epithelial barrier, weight loss, and sepsis that could be prevented by administering two IgA-targeted bacterial species from a healthy microbiota. Dissection of a culture collection of 11 IgA-targeted strains from an undernourished donor, sufficient to transmit these phenotypes, disclosed that Enterobacteriaceae interacted with other consortium members to produce enteropathy. These findings indicate that bacterial targets of IgA responses have etiologic, diagnostic, and therapeutic implications for childhood undernutrition.


Assuntos
Bactérias/classificação , Dieta , Gastroenteropatias/microbiologia , Imunoglobulina A/metabolismo , Kwashiorkor/microbiologia , Animais , Criança , Estudos de Coortes , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Vida Livre de Germes , Humanos , Lactente , Malaui , Camundongos Endogâmicos C57BL , Consórcios Microbianos , Fenótipo
12.
PLoS Negl Trop Dis ; 8(7): e2977, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25033456

RESUMO

An estimated 8 million persons, mainly in Latin America, are infected with Trypanosoma cruzi, the etiologic agent of Chagas disease. Existing antiparasitic drugs for Chagas disease have significant toxicities and suboptimal effectiveness, hence new therapeutic strategies need to be devised to address this neglected tropical disease. Due to the high research and development costs of bringing new chemical entities to the clinic, we and others have investigated the strategy of repurposing existing drugs for Chagas disease. Screens of FDA-approved drugs (described in this paper) have revealed a variety of chemical classes that have growth inhibitory activity against mammalian stage Trypanosoma cruzi parasites. Aside from azole antifungal drugs that have low or sub-nanomolar activity, most of the active compounds revealed in these screens have effective concentrations causing 50% inhibition (EC50's) in the low micromolar or high nanomolar range. For example, we have identified an antihistamine (clemastine, EC50 of 0.4 µM), a selective serotonin reuptake inhibitor (fluoxetine, EC50 of 4.4 µM), and an antifolate drug (pyrimethamine, EC50 of 3.8 µM) and others. When tested alone in the murine model of Trypanosoma cruzi infection, most compounds had insufficient efficacy to lower parasitemia thus we investigated using combinations of compounds for additive or synergistic activity. Twenty-four active compounds were screened in vitro in all possible combinations. Follow up isobologram studies showed at least 8 drug pairs to have synergistic activity on T. cruzi growth. The combination of the calcium channel blocker, amlodipine, plus the antifungal drug, posaconazole, was found to be more effective at lowering parasitemia in mice than either drug alone, as was the combination of clemastine and posaconazole. Using combinations of FDA-approved drugs is a promising strategy for developing new treatments for Chagas disease.


Assuntos
Combinação de Medicamentos , Sinergismo Farmacológico , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Clemastina/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Triazóis/farmacologia
13.
Bioorg Med Chem Lett ; 23(23): 6492-9, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24120539

RESUMO

New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate.


Assuntos
Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Imidazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Inibidores de 14-alfa Desmetilase/administração & dosagem , Inibidores de 14-alfa Desmetilase/farmacologia , Animais , Doença de Chagas/parasitologia , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...