Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 10(1): 56, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802371

RESUMO

Despite significant advances in reconstructing genome-scale metabolic networks, the understanding of cellular metabolism remains incomplete for many organisms. A promising approach for elucidating cellular metabolism is analysing the full scope of enzyme promiscuity, which exploits the capacity of enzymes to bind to non-annotated substrates and generate novel reactions. To guide time-consuming costly experimentation, different computational methods have been proposed for exploring enzyme promiscuity. One relevant algorithm is PROXIMAL, which strongly relies on KEGG to define generic reaction rules and link specific molecular substructures with associated chemical transformations. Here, we present a completely new pipeline, PROXIMAL2, which overcomes the dependency on KEGG data. In addition, PROXIMAL2 introduces two relevant improvements with respect to the former version: i) correct treatment of multi-step reactions and ii) tracking of electric charges in the transformations. We compare PROXIMAL and PROXIMAL2 in recovering annotated products from substrates in KEGG reactions, finding a highly significant improvement in the level of accuracy. We then applied PROXIMAL2 to predict degradation reactions of phenolic compounds in the human gut microbiota. The results were compared to RetroPath RL, a different and relevant enzyme promiscuity method. We found a significant overlap between these two methods but also complementary results, which open new research directions into this relevant question in nutrition.


Assuntos
Algoritmos , Biologia Computacional , Microbioma Gastrointestinal , Redes e Vias Metabólicas , Fenóis , Microbioma Gastrointestinal/fisiologia , Humanos , Fenóis/metabolismo , Biologia Computacional/métodos
2.
Bioinformatics ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748994

RESUMO

MOTIVATION: The identification of minimal genetic interventions that modulate metabolic processes constitutes one of the most relevant applications of genome-scale metabolic models (GEMs). The concept of Minimal Cut Sets (MCSs) and its extension at the gene level, genetic Minimal Cut Sets (gMCSs), have attracted increasing interest in the field of Systems Biology to address this task. Different computational tools have been developed to calculate MCSs and gMCSs using both commercial and open-source software. RESULTS: Here, we present gMCSpy, an efficient Python package to calculate gMCSs in GEMs using both commercial and non-commercial optimization solvers. We show that gMCSpy substantially overperforms our previous computational tool GMCS, which exclusively relied on commercial software. Moreover, we compared gMCSpy with recently published competing algorithms in the literature, finding significant improvements in both accuracy and computation time. All these advances make gMCSpy an attractive tool for researchers in the field of Systems Biology for different applications in health and biotechnology. AVAILABILITY: The Python package gMCSpy can be accessed at: https://github.com/PlanesLab/gMCSpy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38688585

RESUMO

MOTIVATION: Simulating gut microbial dynamics is extremely challenging. Several computational tools, notably the widely used BacArena, enable modeling of dynamic changes in the microbial environment. These methods, however, do not comprehensively account for microbe-microbe stimulant or inhibitory effects or for nutrient-microbe inhibitory effects, typically observed in different compounds present in the daily diet. RESULTS: Here, we present BN-BacArena, an extension of BacArena consisting on the incorporation within the native computational framework of a Bayesian network model that accounts for microbe-microbe and nutrient-microbe interactions. Using in vitro experiments, 16S rRNA gene sequencing data and nutritional composition of 55 foods, the output Bayesian network showed 23 significant nutrient-bacteria interactions, suggesting the importance of compounds such as polyols, ascorbic acid, polyphenols and other phytochemicals, and 40 bacteria-bacteria significant relationships. With test data, BN-BacArena demonstrates a statistically significant improvement over BacArena to predict the time-dependent relative abundance of bacterial species involved in the gut microbiota upon different nutritional interventions. As a result, BN-BacArena opens new avenues for the dynamic modeling and simulation of the human gut microbiota metabolism. AVAILABILITY AND IMPLEMENTATION: MATLAB and R code are available in https://github.com/PlanesLab/BN-BacArena.


Assuntos
Bactérias , Teorema de Bayes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Bactérias/classificação , Simulação por Computador , Biologia Computacional/métodos , Software , Microbiota
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546323

RESUMO

Cancer metabolism is a marvellously complex topic, in part, due to the reprogramming of its pathways to self-sustain the malignant phenotype in the disease, to the detriment of its healthy counterpart. Understanding these adjustments can provide novel targeted therapies that could disrupt and impair proliferation of cancerous cells. For this very purpose, genome-scale metabolic models (GEMs) have been developed, with Human1 being the most recent reconstruction of the human metabolism. Based on GEMs, we introduced the genetic Minimal Cut Set (gMCS) approach, an uncontextualized methodology that exploits the concepts of synthetic lethality to predict metabolic vulnerabilities in cancer. gMCSs define a set of genes whose knockout would render the cell unviable by disrupting an essential metabolic task in GEMs, thus, making cellular proliferation impossible. Here, we summarize the gMCS approach and review the current state of the methodology by performing a systematic meta-analysis based on two datasets of gene essentiality in cancer. First, we assess several thresholds and distinct methodologies for discerning highly and lowly expressed genes. Then, we address the premise that gMCSs of distinct length should have the same predictive power. Finally, we question the importance of a gene partaking in multiple gMCSs and analyze the importance of all the essential metabolic tasks defined in Human1. Our meta-analysis resulted in parameter evaluation to increase the predictive power for the gMCS approach, as well as a significant reduction of computation times by only selecting the crucial gMCS lengths, proposing the pertinency of particular parameters for the peak processing of gMCS.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Proliferação de Células , Expressão Gênica , Nível de Saúde , Fenótipo
5.
NPJ Syst Biol Appl ; 9(1): 32, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454223

RESUMO

Synthetic lethality (SL) is a promising concept in cancer research. A wide array of computational tools has been developed to predict and exploit synthetic lethality for the identification of tumour-specific vulnerabilities. Previously, we introduced the concept of genetic Minimal Cut Sets (gMCSs), a theoretical approach to SL developed for genome-scale metabolic networks. The major challenge in our gMCS framework is to go beyond metabolic networks and extend existing algorithms to more complex protein-protein interactions. In this article, we take a step further and incorporate linear regulatory pathways into our gMCS approach. Extensive algorithmic modifications to compute gMCSs in integrated metabolic and regulatory models are presented in detail. Our extended approach is applied to calculate gMCSs in integrated models of human cells. In particular, we integrate the most recent genome-scale metabolic network, Human1, with 3 different regulatory network databases: Omnipath, Dorothea and TRRUST. Based on the computed gMCSs and transcriptomic data, we discovered new essential genes and their associated synthetic lethal for different cancer cell lines. The performance of the different integrated models is assessed with available large-scale in-vitro gene silencing data. Finally, we discuss the most relevant gene essentiality predictions based on published literature in cancer research.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Humanos , Mutações Sintéticas Letais/genética , Redes e Vias Metabólicas/genética , Neoplasias/genética , Neoplasias/metabolismo , Algoritmos
6.
Biochemistry ; 61(21): 2409-2416, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241173

RESUMO

Patients with major forms of acute hepatic porphyria present acute neurological attacks with overproduction of porphobilinogen (PBG) and δ-aminolevulinic acid (ALA). Even if ALA is considered the most likely agent inducing the acute symptoms, the mechanism of its accumulation has not been experimentally demonstrated. In the most frequent form, acute intermittent porphyria (AIP), inherited gene mutations induce a deficiency in PBG deaminase; thus, accumulation of the substrate PBG is biochemically obligated but not that of ALA. A similar scenario is observed in other forms of acute hepatic porphyria (i.e., porphyria variegate, VP) in which PBG deaminase is inhibited by metabolic intermediates. Here, we have investigated the molecular basis of δ-aminolevulinate accumulation using in vitro fluxomics monitored by NMR spectroscopy and other biophysical techniques. Our results show that porphobilinogen, the natural product of δ-aminolevulinate deaminase, effectively inhibits its anabolic enzyme at abnormally low concentrations. Structurally, this high affinity can be explained by the interactions that porphobilinogen generates with the active site, most of them shared with the substrate. Enzymatically, our flux analysis of an altered heme pathway demonstrates that a minimum accumulation of porphobilinogen will immediately trigger the accumulation of δ-aminolevulinate, a long-lasting observation in patients suffering from acute porphyrias.


Assuntos
Porfiria Aguda Intermitente , Porfirias Hepáticas , Humanos , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/metabolismo , Porfobilinogênio , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Porfirias Hepáticas/genética
7.
NPJ Syst Biol Appl ; 8(1): 24, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831427

RESUMO

The relevance of phenolic compounds in the human diet has increased in recent years, particularly due to their role as natural antioxidants and chemopreventive agents in different diseases. In the human body, phenolic compounds are mainly metabolized by the gut microbiota; however, their metabolism is not well represented in public databases and existing reconstructions. In a previous work, using different sources of knowledge, bioinformatic and modelling tools, we developed AGREDA, an extended metabolic network more amenable to analyze the interaction of the human gut microbiota with diet. Despite the substantial improvement achieved by AGREDA, it was not sufficient to represent the diverse metabolic space of phenolic compounds. In this article, we make use of an enzyme promiscuity approach to complete further the metabolism of phenolic compounds in the human gut microbiota. In particular, we apply RetroPath RL, a previously developed approach based on Monte Carlo Tree Search strategy reinforcement learning, in order to predict the degradation pathways of compounds present in Phenol-Explorer, the largest database of phenolic compounds in the literature. Reactions predicted by RetroPath RL were integrated with AGREDA, leading to a more complete version of the human gut microbiota metabolic network. We assess the impact of our improvements in the metabolic processing of various foods, finding previously undetected connections with output microbial metabolites. By means of untargeted metabolomics data, we present in vitro experimental validation for output microbial metabolites released in the fermentation of lentils with feces of children representing different clinical conditions.


Assuntos
Microbioma Gastrointestinal , Criança , Fezes , Fermentação , Humanos , Metabolômica , Fenóis/metabolismo
8.
Leukemia ; 36(8): 1969-1979, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618797

RESUMO

Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved. Here, we show that CXCL12 produced by Prx1+ mesenchymal cells but not by mature osteolineage cells provide the necessary cues for the maintenance of LSCs in the marrow of an MLL::AF9-induced AML model. Prx1+ cells promote survival of LSCs by modulating energy metabolism and the REDOX balance in LSCs. Deletion of Cxcl12 leads to the accumulation of reactive oxygen species and DNA damage in LSCs, impairing their ability to perpetuate leukemia in transplantation experiments, a defect that can be attenuated by antioxidant therapy. Importantly, our data suggest that this phenomenon appears to be conserved in human patients. Hence, we have identified Prx1+ mesenchymal cells as an integral part of the complex niche-AML metabolic intertwining, pointing towards CXCL12/CXCR4 as a target to eradicate parenchymal LSCs in AML.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Medula Óssea/metabolismo , Metabolismo Energético , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Oxirredução , Microambiente Tumoral
9.
PLoS Comput Biol ; 18(5): e1010180, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639775

RESUMO

With the frenetic growth of high-dimensional datasets in different biomedical domains, there is an urgent need to develop predictive methods able to deal with this complexity. Feature selection is a relevant strategy in machine learning to address this challenge. We introduce a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization Selector Operator). We conducted a benchmark of BOSO with key algorithms in the literature, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis is carried out for methotrexate, a well-studied drug targeting cancer metabolism.


Assuntos
Algoritmos , Neoplasias , Humanos , Modelos Lineares , Aprendizado de Máquina , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
10.
PLoS Comput Biol ; 18(3): e1009395, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35286311

RESUMO

Synthetic Lethality (SL) is currently defined as a type of genetic interaction in which the loss of function of either of two genes individually has limited effect in cell viability but inactivation of both genes simultaneously leads to cell death. Given the profound genomic aberrations acquired by tumor cells, which can be systematically identified with -omics data, SL is a promising concept in cancer research. In particular, SL has received much attention in the area of cancer metabolism, due to the fact that relevant functional alterations concentrate on key metabolic pathways that promote cellular proliferation. With the extensive prior knowledge about human metabolic networks, a number of computational methods have been developed to predict SL in cancer metabolism, including the genetic Minimal Cut Sets (gMCSs) approach. A major challenge in the application of SL approaches to cancer metabolism is to systematically integrate tumor microenvironment, given that genetic interactions and nutritional availability are interconnected to support proliferation. Here, we propose a more general definition of SL for cancer metabolism that combines genetic and environmental interactions, namely loss of gene functions and absence of nutrients in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase (DHFR) inhibition in different environments. Finally, our approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Linhagem Celular Tumoral , Genômica , Humanos , Redes e Vias Metabólicas/genética , Neoplasias/genética , Neoplasias/metabolismo , Nutrientes , Mutações Sintéticas Letais/genética , Microambiente Tumoral
12.
Nat Commun ; 12(1): 4728, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354065

RESUMO

Understanding how diet and gut microbiota interact in the context of human health is a key question in personalized nutrition. Genome-scale metabolic networks and constraint-based modeling approaches are promising to systematically address this complex problem. However, when applied to nutritional questions, a major issue in existing reconstructions is the limited information about compounds in the diet that are metabolized by the gut microbiota. Here, we present AGREDA, an extended reconstruction of diet metabolism in the human gut microbiota. AGREDA adds the degradation pathways of 209 compounds present in the human diet, mainly phenolic compounds, a family of metabolites highly relevant for human health and nutrition. We show that AGREDA outperforms existing reconstructions in predicting diet-specific output metabolites from the gut microbiota. Using 16S rRNA gene sequencing data of faecal samples from Spanish children representing different clinical conditions, we illustrate the potential of AGREDA to establish relevant metabolic interactions between diet and gut microbiota.


Assuntos
Dieta , Microbioma Gastrointestinal/fisiologia , Redes e Vias Metabólicas , Modelos Biológicos , Algoritmos , Criança , Fenômenos Fisiológicos da Nutrição Infantil , Dieta Mediterrânea , Fermentação , Microbioma Gastrointestinal/genética , Humanos , Técnicas In Vitro , Lens (Planta)/química , Valor Nutritivo , RNA Ribossômico 16S/genética , Espanha
13.
Nutrients ; 13(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199047

RESUMO

The gut microbiota has a profound effect on human health and is modulated by food and bioactive compounds. To study such interaction, in vitro batch fermentations are performed with fecal material, and some experimental designs may require that such fermentations be performed with previously frozen stools. Although it is known that freezing fecal material does not alter the composition of the microbial community in 16S rRNA gene amplicon and metagenomic sequencing studies, it is not known whether the microbial community in frozen samples could still be used for in vitro fermentations. To explore this, we undertook a pilot study in which in vitro fermentations were performed with fecal material from celiac, cow's milk allergic, obese, or lean children that was frozen (or not) with 20% glycerol. Before fermentation, the fecal material was incubated in a nutritious medium for 6 days, with the aim of giving the microbial community time to recover from the effects of freezing. An aliquot was taken daily from the stabilization vessel and used for the in vitro batch fermentation of lentils. The microbial community structure was significantly different between fresh and frozen samples, but the variation introduced by freezing a sample was always smaller than the variation among individuals, both before and after fermentation. Moreover, the potential functionality (as determined in silico by a genome-scaled metabolic reconstruction) did not differ significantly, possibly due to functional redundancy. The most affected genus was Bacteroides, a fiber degrader. In conclusion, if frozen fecal material is to be used for in vitro fermentation purposes, our preliminary analyses indicate that the functionality of microbial communities can be preserved after stabilization.


Assuntos
Fermentação , Congelamento , Microbioma Gastrointestinal , Animais , Bovinos , Criança , Fezes/microbiologia , Armazenamento de Alimentos , Microbioma Gastrointestinal/genética , Humanos , Masculino , Microbiota , Leite , Projetos Piloto , RNA Ribossômico 16S/genética
14.
Leukemia ; 35(10): 3012-3016, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972667

RESUMO

Clinical and genetic risk factors are currently used in multiple myeloma (MM) to stratify patients and to design specific therapies. However, these systems do not capture the heterogeneity of the disease supporting the development of new prognostic factors. In this study, we identified active promoters and alternative active promoters in 6 different B cell subpopulations, including bone-marrow plasma cells, and 32 MM patient samples, using RNA-seq data. We find that expression initiated at both regular and alternative promoters was specific of each B cell subpopulation or MM plasma cells, showing a remarkable level of consistency with chromatin-based promoter definition. Interestingly, using 595 MM patient samples from the CoMMpass dataset, we observed that the expression derived from some alternative promoters was associated with lower progression-free and overall survival in MM patients independently of genetic alterations. Altogether, our results define cancer-specific alternative active promoters as new transcriptomic features that can provide a new avenue for prognostic stratification possibilities in patients with MM.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/patologia , Regiões Promotoras Genéticas , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Mieloma Múltiplo/classificação , Mieloma Múltiplo/genética , Prognóstico , Taxa de Sobrevida
15.
Leukemia ; 35(5): 1438-1450, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33597729

RESUMO

Multiple myeloma (MM) is an incurable disease, whose clinical heterogeneity makes its management challenging, highlighting the need for biological features to guide improved therapies. Deregulation of specific long non-coding RNAs (lncRNAs) has been shown in MM, nevertheless, the complete lncRNA transcriptome has not yet been elucidated. In this work, we identified 40,511 novel lncRNAs in MM samples. lncRNAs accounted for 82% of the MM transcriptome and were more heterogeneously expressed than coding genes. A total of 10,351 overexpressed and 9,535 downregulated lncRNAs were identified in MM patients when compared with normal bone-marrow plasma cells. Transcriptional dynamics study of lncRNAs in the context of normal B-cell maturation revealed 989 lncRNAs with exclusive expression in MM, among which 89 showed de novo epigenomic activation. Knockdown studies on one of these lncRNAs, SMILO (specific myeloma intergenic long non-coding RNA), resulted in reduced proliferation and induction of apoptosis of MM cells, and activation of the interferon pathway. We also showed that the expression of lncRNAs, together with clinical and genetic risk alterations, stratified MM patients into several progression-free survival and overall survival groups. In summary, our global analysis of the lncRNAs transcriptome reveals the presence of specific lncRNAs associated with the biological and clinical behavior of the disease.


Assuntos
Mieloma Múltiplo/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Apoptose/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Intervalo Livre de Progressão
16.
Cancers (Basel) ; 12(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645997

RESUMO

The development of predictive biomarkers of response to targeted therapies is an unmet clinical need for many antitumoral agents. Recent genome-wide loss-of-function screens, such as RNA interference (RNAi) and CRISPR-Cas9 libraries, are an unprecedented resource to identify novel drug targets, reposition drugs and associate predictive biomarkers in the context of precision oncology. In this work, we have developed and validated a large-scale bioinformatics tool named DrugSniper, which exploits loss-of-function experiments to model the sensitivity of 6237 inhibitors and predict their corresponding biomarkers of sensitivity in 30 tumor types. Applying DrugSniper to small cell lung cancer (SCLC), we identified genes extensively explored in SCLC, such as Aurora kinases or epigenetic agents. Interestingly, the analysis suggested a remarkable vulnerability to polo-like kinase 1 (PLK1) inhibition in CREBBP-mutant SCLC cells. We validated this association in vitro using four mutated and four wild-type SCLC cell lines and two PLK1 inhibitors (Volasertib and BI2536), confirming that the effect of PLK1 inhibitors depended on the mutational status of CREBBP. Besides, DrugSniper was validated in-silico with several known clinically-used treatments, including the sensitivity of Tyrosine Kinase Inhibitors (TKIs) and Vemurafenib to FLT3 and BRAF mutant cells, respectively. These findings show the potential of genome-wide loss-of-function screens to identify new personalized therapeutic hypotheses in SCLC and potentially in other tumors, which is a valuable starting point for further drug development and drug repositioning projects.

17.
Reprod Toxicol ; 94: 55-64, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32344110

RESUMO

Developmental toxicity is defined as the occurrence of adverse effects on the developing organism as a result from exposure to a toxic agent. These alterations can have long-term acute effects. Current in vitro models present important limitations and the evaluation of toxicity is not entirely objective. In silico methods have also shown limited success, in part due to complex and varied mechanisms of action that mediate developmental toxicity, which are sometimes poorly understood. In this article, we compiled a dataset of compounds with developmental toxicity categories and annotated mechanisms of action for both toxic and non-toxic compounds (DVTOX). With it, we selected a panel of protein targets that might be part of putative Molecular Initiating Events (MIEs) of Adverse Outcome Pathways of developmental toxicity. The validity of this list of candidate MIEs was studied through the evaluation of new drug-target relationships that include such proteins, but were not part of the original database. Finally, an orthology analysis of this protein panel was conducted to select an appropriate animal model to assess developmental toxicity. We tested our approach using the zebrafish embryo toxicity test, finding positive results.


Assuntos
Bases de Dados Factuais , Embrião não Mamífero/efeitos dos fármacos , Teratogênicos/toxicidade , Testes de Toxicidade , Peixe-Zebra , Animais , Biologia Computacional , Desenvolvimento Embrionário/efeitos dos fármacos , Humanos , Modelos Animais
18.
Bioinformatics ; 36(6): 1986-1988, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722383

RESUMO

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Software , Genes , Modelos Moleculares
19.
Front Microbiol ; 10: 848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105659

RESUMO

Predicting the metabolic behavior of the human gut microbiota in different contexts is one of the most promising areas of constraint-based modeling. Recently, we presented a supra-organismal approach to build context-specific metabolic networks of bacterial communities using functional and taxonomic assignments of meta-omics data. In this work, this algorithm is applied to elucidate the metabolic changes induced over the first year after birth in the gut microbiota of a cohort of Spanish infants. We used metagenomics data of fecal samples and nutritional data of 13 infants at five time points. The resulting networks for each time point were analyzed, finding significant alterations once solid food is introduced in the diet. Our work shows that solid food leads to a different pattern of output metabolites that can be potentially released from the gut microbiota to the host. Experimental validation is presented for ferulate, a neuroprotective metabolite involved in the gut-brain axis.

20.
Gigascience ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942869

RESUMO

BACKGROUND: Aberrant alternative splicing plays a key role in cancer development. In recent years, alternative splicing has been used as a prognosis biomarker, a therapy response biomarker, and even as a therapeutic target. Next-generation RNA sequencing has an unprecedented potential to measure the transcriptome. However, due to the complexity of dealing with isoforms, the scientific community has not sufficiently exploited this valuable resource in precision medicine. FINDINGS: We present TranscriptAchilles, the first large-scale tool to predict transcript biomarkers associated with gene essentiality in cancer. This application integrates 412 loss-of-function RNA interference screens of >17,000 genes, together with their corresponding whole-transcriptome expression profiling. Using this tool, we have studied which are the cancer subtypes for which alternative splicing plays a significant role to state gene essentiality. In addition, we include a case study of renal cell carcinoma that shows the biological soundness of the results. The databases, the source code, and a guide to build the platform within a Docker container are available at GitLab. The application is also available online. CONCLUSIONS: TranscriptAchilles provides a user-friendly web interface to identify transcript or gene biomarkers of gene essentiality, which could be used as a starting point for a drug development project. This approach opens a wide range of translational applications in cancer.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Neoplasias/genética , Oncogenes , Software , Algoritmos , Perfilação da Expressão Gênica , Humanos , Modelos Estatísticos , Isoformas de RNA , Transcriptoma , Interface Usuário-Computador , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...