Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Comput Methods Programs Biomed ; 254: 108299, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38959599

RESUMO

BACKGROUND AND OBJECTIVE: Data from electro-anatomical mapping (EAM) systems are playing an increasingly important role in computational modeling studies for the patient-specific calibration of digital twin models. However, data exported from commercial EAM systems are challenging to access and parse. Converting to data formats that are easily amenable to be viewed and analyzed with commonly used cardiac simulation software tools such as openCARP remains challenging. We therefore developed an open-source platform, pyCEPS, for parsing and converting clinical EAM data conveniently to standard formats widely adopted within the cardiac modeling community. METHODS AND RESULTS: pyCEPS is an open-source Python-based platform providing the following functions: (i) access and interrogate the EAM data exported from clinical mapping systems; (ii) efficient browsing of EAM data to preview mapping procedures, electrograms (EGMs), and electro-cardiograms (ECGs); (iii) conversion to modeling formats according to the openCARP standard, to be amenable to analysis with standard tools and advanced workflows as used for in silico EAM data. Documentation and training material to facilitate access to this complementary research tool for new users is provided. We describe the technological underpinnings and demonstrate the capabilities of pyCEPS first, and showcase its use in an exemplary modeling application where we use clinical imaging data to build a patient-specific anatomical model. CONCLUSION: With pyCEPS we offer an open-source framework for accessing EAM data, and converting these to cardiac modeling standard formats. pyCEPS provides the core functionality needed to integrate EAM data in cardiac modeling research. We detail how pyCEPS could be integrated into model calibration workflows facilitating the calibration of a computational model based on EAM data.

2.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853952

RESUMO

Stroke is a leading cause of death and disability worldwide. Atrial myopathy, including fibrosis, is associated with an increased risk of ischemic stroke, but the mechanisms underlying this association are poorly understood. Fibrosis modifies myocardial structure, impairing electrical propagation and tissue biomechanics, and creating stagnant flow regions where clots could form. Fibrosis can be mapped non-invasively using late gadolinium enhancement magnetic resonance imaging (LGE-MRI). However, fibrosis maps are not currently incorporated into stroke risk calculations or computational electro-mechano-fluidic models. We present multi-physics simulations of left atrial (LA) myocardial motion and hemodynamics using patient-specific anatomies and fibrotic maps from LGE-MRI. We modify tissue stiffness and active tension generation in fibrotic regions and investigate how these changes affect LA flow for different fibrotic burdens. We find that fibrotic regions and, to a lesser extent, non-fibrotic regions experience reduced myocardial strain, resulting in decreased LA emptying fraction consistent with clinical observations. Both fibrotic tissue stiffening and hypocontractility independently reduce LA function, but together, these two alterations cause more pronounced effects than either one alone. Fibrosis significantly alters flow patterns throughout the atrial chamber, and particularly, the filling and emptying jets of the left atrial appendage (LAA). The effects of fibrosis in LA flow are largely captured by the concomitant changes in LA emptying fraction except inside the LAA, where a multi-factorial behavior is observed. This work illustrates how high-fidelity, multi-physics models can be used to study thrombogenesis mechanisms in a patient-specific manner, shedding light onto the link between atrial fibrosis and ischemic stroke. Key points: Left atrial (LA) fibrosis is associated with arrhythmogenesis and increased risk of ischemic stroke; its extent and pattern can be quantified on a patient-specific basis using late gadolinium enhancement magnetic resonance imaging.Current stroke risk prediction tools have limited personalization, and their accuracy could be improvedfib by incorporating patient-specific information like fibrotic maps and hemodynamic patterns.We present the first electro-mechano-fluidic multi-physics computational simulations of LA flow, including fibrosis and anatomies from medical imaging.Mechanical changes in fibrotic tissue impair global LA motion, decreasing LA and left atrial appendage (LAA) emptying fractions, especially in subjects with higher fibrosis burdens.Fibrotic-mediated LA motion impairment alters LA and LAA flow near the endocardium and the whole cavity, ultimately leading to more stagnant blood regions in the LAA.

3.
Comput Methods Programs Biomed ; 251: 108189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728827

RESUMO

BACKGROUND AND OBJECTIVE: Simulation of cardiac electrophysiology (CEP) is an important research tool that is increasingly being adopted in industrial and clinical applications. Typical workflows for CEP simulation consist of a sequence of processing stages starting with building an anatomical model and then calibrating its electrophysiological properties to match observable data. While the calibration stages are common and generalizable, most CEP studies re-implement these steps in complex and highly variable workflows. This lack of standardization renders the execution of computational CEP studies in an efficient, robust, and reproducible manner a significant challenge. Here, we propose ForCEPSS as an efficient and robust, yet flexible, software framework for standardizing CEP simulation studies. METHODS AND RESULTS: Key processing stages of CEP simulation studies are identified and implemented in a standardized workflow that builds on openCARP1 Plank et al. (2021) and the Python-based carputils2 framework. Stages include (i) the definition and initialization of action potential phenotypes, (ii) the tissue scale calibration of conduction properties, (iii) the functional initialization to approximate a limit cycle corresponding to the dynamic reference state according to an experimental protocol, and, (iv) the execution of the CEP study where the electrophysiological response to a perturbation of the limit cycle is probed. As an exemplar application, we employ ForCEPSS to prepare a CEP study according to the Virtual Arrhythmia Risk Prediction protocol used for investigating the arrhythmogenic risk of developing infarct-related ventricular tachycardia (VT) in ischemic cardiomyopathy patients. We demonstrate that ForCEPSS enables a fully automated execution of all stages of this complex protocol. CONCLUSION: ForCEPSS offers a novel comprehensive, standardized, and automated CEP simulation workflow. The high degree of automation accelerates the execution of CEP simulation studies, reduces errors, improves robustness, and makes CEP studies reproducible. Verification of simulation studies within the CEP modeling community is thus possible. As such, ForCEPSS makes an important contribution towards increasing transparency, standardization, and reproducibility of in silico CEP experiments.


Assuntos
Potenciais de Ação , Simulação por Computador , Software , Humanos , Arritmias Cardíacas/fisiopatologia , Eletrofisiologia Cardíaca , Calibragem , Modelos Cardiovasculares , Coração/fisiologia
4.
Herzschrittmacherther Elektrophysiol ; 35(2): 118-123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607554

RESUMO

Cardiac arrhythmias remain a major cause of death and disability. Current antiarrhythmic therapies are effective to only a limited extent, likely in large part due to their mechanism-independent approach. Precision cardiology aims to deliver targeted therapy for an individual patient to maximize efficacy and minimize adverse effects. In-silico digital twins have emerged as a promising strategy to realize the vision of precision cardiology. While there is no uniform definition of a digital twin, it typically employs digital tools, including simulations of mechanistic computer models, based on patient-specific clinical data to understand arrhythmia mechanisms and/or make clinically relevant predictions. Digital twins have become part of routine clinical practice in the setting of interventional cardiology, where commercially available services use digital twins to non-invasively determine the severity of stenosis (computed tomography-based fractional flow reserve). Although routine clinical application has not been achieved for cardiac arrhythmia management, significant progress towards digital twins for cardiac electrophysiology has been made in recent years. At the same time, significant technical and clinical challenges remain. This article provides a short overview of the history of digital twins for cardiac electrophysiology, including recent applications for the prediction of sudden cardiac death risk and the tailoring of rhythm control in atrial fibrillation. The authors highlight the current challenges for routine clinical application and discuss how overcoming these challenges may allow digital twins to enable a significant precision medicine-based advancement in cardiac arrhythmia management.


Assuntos
Arritmias Cardíacas , Humanos , Arritmias Cardíacas/terapia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Medicina de Precisão/tendências , Medicina de Precisão/métodos , Previsões , Técnicas Eletrofisiológicas Cardíacas/tendências , Morte Súbita Cardíaca/prevenção & controle , Simulação por Computador
5.
Heart Rhythm ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670247

RESUMO

BACKGROUND: Implantable cardiac defibrillator (ICD) implantation can protect against sudden cardiac death after myocardial infarction. However, improved risk stratification for device requirement is still needed. OBJECTIVE: The purpose of this study was to improve assessment of postinfarct ventricular electropathology and prediction of appropriate ICD therapy by combining late gadolinium enhancement (LGE) and advanced computational modeling. METHODS: ADAS 3D LV (ADAS LV Medical, Barcelona, Spain) and custom-made software were used to generate 3-dimensional patient-specific ventricular models in a prospective cohort of patients with a myocardial infarction (N = 40) having undergone LGE imaging before ICD implantation. Corridor metrics and 3-dimensional surface features were computed from LGE images. The Virtual Induction and Treatment of Arrhythmias (VITA) framework was applied to patient-specific models to comprehensively probe the vulnerability of the scar substrate to sustaining reentrant circuits. Imaging and VITA metrics, related to the numbers of induced ventricular tachycardias and their corresponding round trip times (RTTs), were compared with ICD therapy during follow-up. RESULTS: Patients with an event (n = 17) had a larger interface between healthy myocardium and scar and higher VITA metrics. Cox regression analysis demonstrated a significant independent association with an event: interface (hazard ratio [HR] 2.79; 95% confidence interval [CI] 1.44-5.44; P < .01), unique ventricular tachycardias (HR 1.67; 95% CI 1.04-2.68; P = .03), mean RTT (HR 2.14; 95% CI 1.11-4.12; P = .02), and maximum RTT (HR 2.13; 95% CI 1.19-3.81; P = .01). CONCLUSION: A detailed quantitative analysis of LGE-based scar maps, combined with advanced computational modeling, can accurately predict ICD therapy and could facilitate the early identification of high-risk patients in addition to left ventricular ejection fraction.

6.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598284

RESUMO

Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.


Assuntos
Miócitos Cardíacos , Redes Neurais de Computação , Humanos , Potenciais de Ação , Simulação por Computador , Bioensaio
7.
IEEE Trans Med Imaging ; PP2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478452

RESUMO

State-space modeling (SSM) provides a general framework for many image reconstruction tasks. Error in a priori physiological knowledge of the imaging physics, can bring incorrectness to solutions. Modern deep-learning approaches show great promise but lack interpretability and rely on large amounts of labeled data. In this paper, we present a novel hybrid SSM framework for electrocardiographic imaging (ECGI) to leverage the advantage of state-space formulations in data-driven learning. We first leverage the physics-based forward operator to supervise the learning. We then introduce neural modeling of the transition function and the associated Bayesian filtering strategy. We applied the hybrid SSM framework to reconstruct electrical activity on the heart surface from body-surface potentials. In unsupervised settings of both in-silico and in-vivo data without cardiac electrical activity as the ground truth to supervise the learning, we demonstrated improved ECGI performances of the hybrid SSM framework trained from a small number of ECG observations in comparison to the fixed SSM. We further demonstrated that, when in-silico simulation data becomes available, mixed supervised and unsupervised training of the hybrid SSM achieved a further 40.6% and 45.6% improvements, respectively, in comparison to traditional ECGI baselines and supervised data-driven ECGI baselines for localizing the origin of ventricular activations in real data.

8.
medRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106072

RESUMO

Large-cohort studies using cardiovascular imaging and diagnostic datasets have assessed cardiac anatomy, function, and outcomes, but typically do not reveal underlying biological mechanisms. Cardiac digital twins (CDTs) provide personalized physics- and physiology-constrained in-silico representations, enabling inference of multi-scale properties tied to these mechanisms. We constructed 3464 anatomically-accurate CDTs using cardiac magnetic resonance images from UK biobank and personalised their myocardial conduction velocities (CVs) from electrocardiograms (ECG), through an automated framework. We found well-known sex-specific differences in QRS duration were fully explained by myocardial anatomy, as CV remained consistent across sexes. Conversely, significant associations of CV with ageing and increased BMI suggest myocardial tissue remodelling. Novel associations were observed with left ventricular ejection fraction and mental-health phenotypes, through a phenome-wide association study, and CV was also linked with adverse clinical outcomes. Our study highlights the utility of population-based CDTs in assessing intersubject variability and uncovering strong links with mental health.

9.
Interface Focus ; 13(6): 20230038, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106921

RESUMO

To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).

10.
Sci Data ; 10(1): 531, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553349

RESUMO

Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 sub-classes. A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity. The ECG database is split into training, validation, and test folds for development and objective assessment of novel machine learning algorithms.


Assuntos
Eletrocardiografia , Coração , Humanos , Algoritmos , Aprendizado de Máquina , Miocárdio
12.
Europace ; 25(9)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37421339

RESUMO

AIMS: Substrate assessment of scar-mediated ventricular tachycardia (VT) is frequently performed using late gadolinium enhancement (LGE) images. Although this provides structural information about critical pathways through the scar, assessing the vulnerability of these pathways for sustaining VT is not possible with imaging alone.This study evaluated the performance of a novel automated re-entrant pathway finding algorithm to non-invasively predict VT circuit and inducibility. METHODS: Twenty post-infarct VT-ablation patients were included for retrospective analysis. Commercially available software (ADAS3D left ventricular) was used to generate scar maps from 2D-LGE images using the default 40-60 pixel-signal-intensity (PSI) threshold. In addition, algorithm sensitivity for altered thresholds was explored using PSI 45-55, 35-65, and 30-70. Simulations were performed on the Virtual Induction and Treatment of Arrhythmias (VITA) framework to identify potential sites of block and assess their vulnerability depending on the automatically computed round-trip-time (RTT). Metrics, indicative of substrate complexity, were correlated with VT-recurrence during follow-up. RESULTS: Total VTs (85 ± 43 vs. 42 ± 27) and unique VTs (9 ± 4 vs. 5 ± 4) were significantly higher in patients with- compared to patients without recurrence, and were predictive of recurrence with area under the curve of 0.820 and 0.770, respectively. VITA was robust to scar threshold variations with no significant impact on total and unique VTs, and mean RTT between the four models. Simulation metrics derived from PSI 45-55 model had the highest number of parameters predictive for post-ablation VT-recurrence. CONCLUSION: Advanced computational metrics can non-invasively and robustly assess VT substrate complexity, which may aid personalized clinical planning and decision-making in the treatment of post-infarction VT.


Assuntos
Cicatriz , Simulação por Computador , Taquicardia Ventricular , Humanos , Algoritmos , Ablação por Cateter , Cicatriz/complicações , Infarto do Miocárdio/complicações , Estudos Retrospectivos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/cirurgia , Reprodutibilidade dos Testes , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
13.
Heart Rhythm ; 20(11): 1481-1488, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37453603

RESUMO

BACKGROUND: The WiSE-CRT System (EBR systems, Sunnyvale, CA) permits leadless left ventricular pacing. Currently, no intraprocedural guidance is used to target optimal electrode placement while simultaneously guiding acoustic transmitter placement in close proximity to the electrode to ensure adequate power delivery. OBJECTIVE: The purpose of this study was to assess the use of computed tomography (CT) anatomy, dynamic perfusion and mechanics, and predicted activation pattern to identify both the optimal electrode and transmitter locations. METHODS: A novel CT protocol was developed using preprocedural imaging and simulation to identify target segments (TSs) for electrode implantation, with late electrical and mechanical activation, with ≥5 mm wall thickness without perfusion defects. Modeling of the acoustic intensity from different transmitter implantation sites to the TSs was used to identify the optimal transmitter location. During implantation, TSs were overlaid on fluoroscopy to guide optimal electrode location that were evaluated by acute hemodynamic response (AHR) by measuring the maximal rate of left ventricular pressure rise with biventricular pacing. RESULTS: Ten patients underwent the implantation procedure. The transmitter could be implanted within the recommended site on the basis of preprocedural analysis in all patients. CT identified a mean of 4.8 ± 3.5 segments per patient with wall thickness < 5 mm. During electrode implantation, biventricular pacing within TSs resulted in a significant improvement in AHR vs non-TSs (25.5% ± 8.8% vs 12.9% ± 8.6%; P < .001). Pacing in CT-identified scar resulted in either failure to capture or minimal AHR improvement. The electrode was targeted to the TSs in all patients and was implanted in the TSs in 80%. CONCLUSION: Preprocedural imaging and modeling data with intraprocedural guidance can successfully guide WiSE-CRT electrode and transmitter implantation to allow optimal AHR and adequate power delivery.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Dispositivos de Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca/terapia , Terapia de Ressincronização Cardíaca/métodos , Eletrodos , Tomografia Computadorizada por Raios X , Perfusão , Resultado do Tratamento , Ventrículos do Coração/diagnóstico por imagem
14.
PLoS Comput Biol ; 19(6): e1011257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363928

RESUMO

Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.


Assuntos
Ventrículos do Coração , Coração , Humanos , Coração/fisiologia , Átrios do Coração , Modelos Cardiovasculares
15.
Comput Biol Med ; 156: 106696, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870172

RESUMO

Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood. We sought to gauge the acute importance of the different MEF mechanisms on heart function. An electromechanical computer model of a dog heart was constructed, using a biventricular geometry of 500K tetrahedral elements. To describe cellular behavior, we used a detailed ionic model to which a SAC model and an active tension model, dependent on stretch and shortening velocity and with calcium sensitivity, were added. Ventricular inflow and outflow were connected to the CircAdapt model of cardiovascular circulation. Pressure-volume loops and activation times were used for model validation. Simulations showed that SACs did not affect acute mechanical response, although if their trigger level was decreased sufficiently, they could cause premature excitations. The stretch dependence of tension had a modest effect in reducing the maximum stretch, and stroke volume, while shortening velocity had a much bigger effect on both. MEF served to reduce the heterogeneity in stretch while increasing tension heterogeneity. In the context of left bundle branch block, a decreased SAC trigger level could restore cardiac output by reducing the maximal stretch when compared to cardiac resynchronization therapy. MEF is an important aspect of cardiac function and could potentially mitigate activation problems.


Assuntos
Bloqueio de Ramo , Cálcio , Animais , Cães , Cálcio/metabolismo , Coração/fisiologia , Arritmias Cardíacas , Ventrículos do Coração
16.
J Cardiovasc Electrophysiol ; 34(4): 984-993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738149

RESUMO

INTRODUCTION: Conduction system pacing (CSP), in the form of His bundle pacing (HBP) or left bundle branch pacing (LBBP), is emerging as a valuable cardiac resynchronization therapy (CRT) delivery method. However, patient selection and therapy personalization for CSP delivery remain poorly characterized. We aim to compare pacing-induced electrical synchrony during CRT, HBP, LBBP, HBP with left ventricular (LV) epicardial lead (His-optimized CRT [HOT-CRT]), and LBBP with LV epicardial lead (LBBP-optimized CRT [LOT-CRT]) in patients with different conduction disease presentations using computational modeling. METHODS: We simulated ventricular activation on 24 four-chamber heart geometries, including His-Purkinje systems with proximal left bundle branch block (LBBB). We simulated septal scar, LV lateral wall scar, and mild and severe myocardium and LV His-Purkinje system conduction disease by decreasing the conduction velocity (CV) down to 70% and 35% of the healthy CV. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (90% of biventricular activation time [BIVAT-90]). RESULTS: Severe LV His-Purkinje conduction disease favored CRT (BIVAT-90: HBP 101.5 ± 7.8 ms vs. CRT 93.0 ± 8.9 ms, p < .05), with additional electrical synchrony induced by HOT-CRT (87.6 ± 6.7 ms, p < .05) and LOT-CRT (73.9 ± 7.6 ms, p < .05). Patients with slow myocardium CV benefit more from CSP compared to CRT (BIVAT-90: CRT 134.5 ± 24.1 ms; HBP 97.1 ± 9.9 ms, p < .01; LBBP: 101.5 ± 10.7 ms, p < .01). Septal but not lateral wall scar made CSP ineffective, while CRT was able to resynchronize the ventricles in the presence of septal scar (BIVAT-90: baseline 119.1 ± 10.8 ms vs. CRT 85.1 ± 14.9 ms, p < .01). CONCLUSION: Severe LV His-Purkinje conduction disease attenuates the benefits of CSP, with additional improvements achieved with HOT-CRT and LOT-CRT. Septal but not lateral wall scars make CSP ineffective.


Assuntos
Fascículo Atrioventricular , Cicatriz , Humanos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Miocárdio
17.
JACC Clin Electrophysiol ; 9(7 Pt 1): 923-935, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36669900

RESUMO

BACKGROUND: Voltage mapping in nonischemic cardiomyopathy can fail to identify midmyocardial substrate for ventricular arrhythmias, an important cause of ablation failure. OBJECTIVES: The aim of this study was to assess whether frequency domain analysis of endocardial left ventricular electrograms (EGMs) can better predict the presence of midmyocardial fibrosis (MMF) compared with voltage amplitude. METHODS: Nonischemic cardiomyopathy patients undergoing ventricular tachycardia ablation with registered preprocedural cardiac computed tomography and late iodine enhancement were included. Presence of fibrosis at each EGM site was assessed. Bipolar and unipolar EGMs were transformed to the frequency domain using multitaper spectral analysis. Singular value decomposition of the EGM frequency spectrum was used within a supervised machine learning process to select features to predict the presence of MMF and compare against predictions using voltage amplitude. RESULTS: Thirteen patients were included (median age 57 years [IQR: 28-73 years], median ejection fraction 40% [IQR: 15%-57%]). A total of 6,015 EGM pairs were processed: 2,459 EGM pairs in MMF areas and 3,556 EGM pairs in non-MMF areas. Supervised classifiers were trained with stratified k-fold cross-validation within patients. The distribution of mean area under the curve metrics using frequency features, f, was significantly greater than voltage feature area under the curve metrics, v, (mean f = 0.841 [95% CI: 0.789-0.884] vs mean v = 0.591 [95% CI: 0.530-0.658]; P < 0.001), indicating that frequency-trained classifiers better predicted the presence of MMF. CONCLUSIONS: These data indicate the promising discriminatory value of endocardial EGM frequency content in the assessment of concealed myocardial substrate. Further studies are needed to investigate the importance of the specific frequency features identified.


Assuntos
Cardiomiopatias , Taquicardia Ventricular , Humanos , Pessoa de Meia-Idade , Taquicardia Ventricular/cirurgia , Cardiomiopatias/diagnóstico , Ventrículos do Coração , Miocárdio , Cicatriz
18.
Comput Biol Med ; 154: 106550, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36701966

RESUMO

BACKGROUND: Post myocardial infarction (MI) ventricles contain fibrotic tissue and may have disrupted electrical properties, both of which predispose to an increased risk of life-threatening arrhythmias. Application of epicardial patches obtained from human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a potential long-term therapy to treat heart failure resulting from post MI remodelling. However, whether the introduction of these patches is anti- or pro-arrhythmic has not been studied. METHODS: We studied arrhythmic risk using in silico engineered heart tissue (EHT) patch engraftment on human post-MI ventricular models. Two patient models were studied, including one with a large dense scar and one with an apparent channel of preserved viability bordered on both sides by scar. In each heart model a virtual EHT patch was introduced as a layer of viable tissue overlying the scarred area, with hiPSC-CMs electrophysiological properties. The incidence of re-entrant and sustained activation in simulations with and without EHT patches was assessed and the arrhythmia inducibility compared in the context of different EHT patch properties (conduction velocity (CV) and action potential duration (APD)). The impact of the EHT patch on the likelihood of focal ectopic impulse propagation was estimated by assessing the minimum stimulus strength and duration required to generate a propagating impulse in the scar border zone (BZ) with and without patch. RESULTS: We uncovered two main mechanisms by which ventricular tachycardia (VT) risk could be either augmented or attenuated by the interaction of the patch with the tissue. In the case of isthmus-related VT, our simulations predict that EHT patches can prevent the induction of VT when the, generally longer, hiPSC-CMs APD is reduced towards more physiological values. In the case of large dense scar, we found that, an EHT patch with CV similar to the host myocardium does not promote VT, while EHT patches with lower CV increase the risk of VT, by promoting both non-sustained and sustained re-entry. Finally, our simulations indicate that electrically coupled EHT patches reduce the likelihood of propagation of focal ectopic impulses. CONCLUSIONS: The introduction of EHT patches as a treatment for heart failure has the potential to augment or attenuate the risk of ventricular arrhythmias, and variations in the anatomic configuration of the substrate, the functional properties of the BZ and the electrophysiologic properties of the patch itself will determine the overall impact. Planning for delivery of this therapy will need to consider the possible impact on arrhythmia.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Taquicardia Ventricular , Humanos , Cicatriz , Arritmias Cardíacas , Miocárdio , Miócitos Cardíacos/patologia , Insuficiência Cardíaca/patologia
19.
Europace ; 25(2): 469-477, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36369980

RESUMO

AIMS: Existing strategies that identify post-infarct ventricular tachycardia (VT) ablation target either employ invasive electrophysiological (EP) mapping or non-invasive modalities utilizing the electrocardiogram (ECG). Their success relies on localizing sites critical to the maintenance of the clinical arrhythmia, not always recorded on the 12-lead ECG. Targeting the clinical VT by utilizing electrograms (EGM) recordings stored in implanted devices may aid ablation planning, enhancing safety and speed and potentially reducing the need of VT induction. In this context, we aim to develop a non-invasive computational-deep learning (DL) platform to localize VT exit sites from surface ECGs and implanted device intracardiac EGMs. METHODS AND RESULTS: A library of ECGs and EGMs from simulated paced beats and representative post-infarct VTs was generated across five torso models. Traces were used to train DL algorithms to localize VT sites of earliest systolic activation; first tested on simulated data and then on a clinically induced VT to show applicability of our platform in clinical settings. Localization performance was estimated via localization errors (LEs) against known VT exit sites from simulations or clinical ablation targets. Surface ECGs successfully localized post-infarct VTs from simulated data with mean LE = 9.61 ± 2.61 mm across torsos. VT localization was successfully achieved from implanted device intracardiac EGMs with mean LE = 13.10 ± 2.36 mm. Finally, the clinically induced VT localization was in agreement with the clinical ablation volume. CONCLUSION: The proposed framework may be utilized for direct localization of post-infarct VTs from surface ECGs and/or implanted device EGMs, or in conjunction with efficient, patient-specific modelling, enhancing safety and speed of ablation planning.


Assuntos
Ablação por Cateter , Aprendizado Profundo , Taquicardia Ventricular , Humanos , Técnicas Eletrofisiológicas Cardíacas , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/cirurgia , Eletrocardiografia/métodos , Infarto/cirurgia
20.
Ann Biomed Eng ; 51(1): 241-252, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271218

RESUMO

Previous patient-specific model calibration techniques have treated each patient independently, making the methods expensive for large-scale clinical adoption. In this work, we show how we can reuse simulations to accelerate the patient-specific model calibration pipeline. To represent anatomy, we used a Statistical Shape Model and to represent function, we ran electrophysiological simulations. We study the use of 14 biomarkers to calibrate the model, training one Gaussian Process Emulator (GPE) per biomarker. To fit the models, we followed a Bayesian History Matching (BHM) strategy, wherein each iteration a region of the parameter space is ruled out if the emulation with that set of parameter values produces is "implausible". We found that without running any extra simulations we can find 87.41% of the non-implausible parameter combinations. Moreover, we showed how reducing the uncertainty of the measurements from 10 to 5% can reduce the final parameter space by 6 orders of magnitude. This innovation allows for a model fitting technique, therefore reducing the computational load of future biomedical studies.


Assuntos
Coração , Modelos Estatísticos , Humanos , Teorema de Bayes , Calibragem , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...