Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(51): 17803-17809, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36520991

RESUMO

Peroxynitrite and its radical decomposition products are highly reactive nitrogen and oxygen species that can influence the balance between health and disease in multiple organ systems. Despite vigorous research activity, real-time quantitative monitoring of peroxynitrite generated by donor compounds remains challenging. Here, we report a kinetics-based fluorescence method for quantitative tracking of peroxynitrite generation using the oxidative decarbonylation of isatin to form anthranilic acid as a fluorescent probe. This method relies on knowledge of the rate of the reaction of peroxynitrite with the probe, which we measure using stopped-flow fluorescence techniques. To the best of our knowledge, this is the first optical method capable of providing real-time quantitative measures of peroxynitrite concentrations generated from donor compounds, as demonstrated herein for SIN-1 and Angeli's salt.


Assuntos
Isatina , Óxidos de Nitrogênio , Ácido Peroxinitroso , Cinética , Estresse Oxidativo
2.
ACS Cent Sci ; 8(1): 67-76, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35106374

RESUMO

Patterning chemical reactivity with a high spatiotemporal resolution and chemical versatility is critically important for advancing revolutionary emergent technologies, including nanorobotics, bioprinting, and photopharmacology. Current methods are complex and costly, necessitating novel techniques that are easy to use and compatible with a wide range of chemical functionalities. This study reports the development of a digital light processing (DLP) fluorescence microscope that enables the structuring of visible light (465-625 nm) for high-resolution photochemical patterning and simultaneous fluorescence imaging of patterned samples. A range of visible-light-driven photochemical systems, including thiol-ene photoclick reactions, Wolff rearrangements of diazoketones, and photopolymerizations, are shown to be compatible with this system. Patterning the chemical functionality onto microscopic polymer beads and films is accomplished with photographic quality and resolutions as high as 2.1 µm for Wolff rearrangement chemistry and 5 µm for thiol-ene chemistry. Photoactivation of molecules in living cells is demonstrated with single-cell resolution, and microscale 3D printing is achieved using a polymer resin with a 20 µm xy-resolution and a 100 µm z-resolution. Altogether, this work debuts a powerful and easy-to-use platform that will facilitate next-generation nanorobotic, 3D printing, and metamaterial technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...