Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979156

RESUMO

Whole-genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in Saccharomyces cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post-WGD. In S. cerevisiae, HRR25 encodes the casein kinase 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post-WGD and non-WGD species, and have nonconserved cellular localization, consistent with their ongoing loss of function. The analysis in Naumovozyma castellii shows that the noncomplementing ohnolog is expressed at a lower level and has become nonessential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Duplicação Gênica , Genoma Fúngico , Evolução Molecular , Saccharomycetales/genética , Proteínas de Saccharomyces cerevisiae/genética , Caseína Quinase I/genética
2.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873368

RESUMO

Whole genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in S. cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post WGD. In S. cerevisiae, HRR25 encodes the casein kinase (CK) 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post and non-WGD species, and have non-conserved cellular localization, consistent with their ongoing loss of function. The analysis in N. castelli shows that the non-complementing ohnolog is expressed at a lower level and has become non-essential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.

3.
PLoS Biol ; 21(4): e3002042, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079504

RESUMO

The biophysical properties of the cytoplasm are major determinants of key cellular processes and adaptation. Many yeasts produce dormant spores that can withstand extreme conditions. We show that spores of Saccharomyces cerevisiae exhibit extraordinary biophysical properties, including a highly viscous and acidic cytosol. These conditions alter the solubility of more than 100 proteins such as metabolic enzymes that become more soluble as spores transit to active cell proliferation upon nutrient repletion. A key regulator of this transition is the heat shock protein, Hsp42, which shows transient solubilization and phosphorylation, and is essential for the transformation of the cytoplasm during germination. Germinating spores therefore return to growth through the dissolution of protein assemblies, orchestrated in part by Hsp42 activity. The modulation of spores' molecular properties are likely key adaptive features of their exceptional survival capacities.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteoma/metabolismo , Solubilidade , Saccharomycetales/metabolismo , Esporos Fúngicos , Citoplasma/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Yeast ; 38(1): 81-89, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202071

RESUMO

Spore activation is one of the most important developmental decisions in fungi as it initiates the transition from dormant and stress-resistant cells to vegetative cells. Because in many species mating follows spore activation and germination, signals that trigger this developmental transition can also contribute to species reproductive barriers. Here, we examine the biochemical signals triggering spore activation in a natural species complex of budding yeast, Saccharomyces paradoxus (lineages SpA, SpB, SpC and SpC*). We first demonstrate that we can quantitatively monitor spore activation in these closely related lineages. Second, we dissect the composition of culture media to identify components necessary and/or sufficient to activate spores in the four lineages. We show that, contrary to expectation, glucose is necessary but not sufficient to trigger spore activation. We also show that two of the North American lineages (SpC and SpC*) diverge from the other North American (SpB) and European (SpA) lineages in terms of germination signal as their spore activation requires inorganic phosphate. Our results show that the way budding yeast interpret environmental conditions during spore activation diverged among closely related and incipient species, which means that it may play a role in their ecological differentiation and reproductive isolation. TAKE AWAY: Sensing of multiple compounds allows spore activation in non-domesticated budding yeast. Spore activation cues differ among Saccharomyces paradoxus lineages. Dextrose and phosphate signal activation in SpC and SpC* spores.


Assuntos
Glucose/metabolismo , Saccharomyces/genética , Saccharomyces/fisiologia , Saccharomycetales/metabolismo , Esporos Fúngicos/fisiologia , Meios de Cultura , Glucose/farmacologia , Fosfatos/farmacologia , Saccharomyces/efeitos dos fármacos , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética
5.
Curr Protoc Microbiol ; 59(1): e123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035407

RESUMO

Germination is an important developmental process that supports resumption of growth in dormant spores. The study of the mechanisms underlying germination requires a pure spore population devoid of other cell types. This article describes the sporulation of wild Saccharomyces cerevisiae and Saccharomyces paradoxus strains, and the isolation and purification of ascospores. We also describe a method to synchronously induce germination in a spore population as well as to measure spore activation. This procedure can be applied, for example, to the study of environmental conditions that trigger germination. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Sporulation Basic Protocol 2: Spore purification Basic Protocol 3: Germination induction Support Protocol 1: Flow cytometry analysis Support Protocol 2: Heat-shock resistance measurement.


Assuntos
Técnicas Microbiológicas/métodos , Esporos Fúngicos/fisiologia , Leveduras/isolamento & purificação , Citometria de Fluxo , Resposta ao Choque Térmico , Temperatura Alta , Saccharomyces , Saccharomyces cerevisiae
6.
Genetics ; 211(3): 893-911, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30647069

RESUMO

Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In Schizosaccharomyces pombe, one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N5-oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of sib1+ , sib2+ , and str1+ transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions. sib1Δ sib2Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when str1+ is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr553 and Tyr567) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferricromo/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Esporos Fúngicos/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Ferro/metabolismo , Domínios Proteicos , Transporte Proteico , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
7.
J Biol Chem ; 292(28): 11896-11914, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28572514

RESUMO

During fungal spore germination, a resting spore returns to a conventional mode of cell division and resumes vegetative growth, but the requirements for spore germination are incompletely understood. Here, we show that copper is essential for spore germination in Schizosaccharomyces pombe Germinating spores develop a single germ tube that emerges from the outer spore wall in a process called outgrowth. Under low-copper conditions, the copper transporters Ctr4 and Ctr5 are maximally expressed at the onset of outgrowth. In the case of Ctr6, its expression is broader, taking place before and during outgrowth. Spores lacking Ctr4, Ctr5, and the copper sensor Cuf1 exhibit complete germination arrest at outgrowth. In contrast, ctr6 deletion only partially interferes with formation of outgrowing spores. At outgrowth, Ctr4-GFP and Ctr5-Cherry first co-localize at the spore contour, followed by re-location to a middle peripheral spore region. Subsequently, they move away from the spore body to occupy the periphery of the nascent cell. After breaking of spore dormancy, Ctr6 localizes to the vacuole membranes that are enriched in the spore body relative to the germ tube. Using a copper-binding tracker, results showed that labile copper is preferentially localized to the spore body. Further analysis showed that Ctr4 and Ctr6 are required for copper-dependent activation of the superoxide dismutase 1 (SOD1) during spore germination. This activation is critical because the loss of SOD1 activity blocked spore germination at outgrowth. Taken together, these results indicate that cell-surface copper transporters and SOD1 are required for completion of the spore germination program.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Esporos Fúngicos/fisiologia , Superóxido Dismutase-1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , Ativação Enzimática , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Microscopia de Interferência , Microscopia de Contraste de Fase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SLC31 , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Proteína Vermelha Fluorescente
8.
J Biol Chem ; 289(14): 10168-81, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24569997

RESUMO

Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4(+) and ctr5(+) revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6(+), its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4(+) and ctr5(+) is exclusively dependent on the presence of Cuf1, ctr6(+) gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4(+) and ctr6(+) results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Membranas Intracelulares/metabolismo , Meiose/fisiologia , Schizosaccharomyces/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte de Cátions/genética , Transporte Proteico/fisiologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vacúolos/genética
9.
Eukaryot Cell ; 12(4): 575-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23397571

RESUMO

Mfc1 is a meiosis-specific protein that mediates copper transport during the meiotic program in Schizosaccharomyces pombe. Although the mfc1(+) gene is induced at the transcriptional level in response to copper deprivation, the molecular determinants that are required for its copper starvation-dependent induction are unknown. Promoter deletion and site-directed mutagenesis have allowed identification of a new cis-regulatory element in the promoter region of the mfc1(+) gene. This cis-acting regulatory sequence containing the sequence TCGGCG is responsible for transcriptional activation of mfc1(+) under low-copper conditions. The TCGGCG sequence contains a CGG triplet known to serve as a binding site for members of the Zn(2)Cys(6) binuclear cluster transcriptional regulator family. In agreement with this fact, one member of this group of regulators, denoted Mca1, was found to be required for maximum induction of mfc1(+) gene expression. Analysis of Mca1 cellular distribution during meiosis revealed that it colocalizes with both chromosomes and sister chromatids during early, middle, and late phases of the meiotic program. Cells lacking Mca1 exhibited a meiotic arrest at metaphase I under low-copper conditions. Binding studies revealed that the N-terminal 150-residue segment of Mca1 expressed as a fusion protein in Escherichia coli specifically interacts with the TCGGCG sequence of the mfc1(+) promoter. Taken together, these results identify the cis-regulatory TCGGCG sequence and the transcription factor Mca1 as critical components for activation of the meiotic copper transport mfc1(+) gene in response to copper starvation.


Assuntos
Sequência de Bases , Cobre/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Deleção de Sequência , Sequência de Aminoácidos , Sítios de Ligação , Cromossomos Fúngicos , Cobre/deficiência , Escherichia coli/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...