RESUMO
The lack of naturally occurring resistance to Citrus psorosis virus (CPsV) has demanded exploitation of a transgenic approach for the development of CPsV-resistant sweet orange plants. Transgenic sweet orange plants producing intron-hairpin RNA transcripts (ihpRNA) corresponding to viral cp, 54K or 24K genes were generated and analyzed at the molecular and phenotypic levels. Two independent CPsV challenge assays demonstrated that expression of ihpRNA derived from the cp gene (ihpCP) provided a high level of virus resistance, while those derived from 54K and 24K genes (ihp54K and ihp24K) provided partial or no resistance. The presence of small interfering RNA molecules (siRNAs) in the ihpCP transgenic sweet orange plants prior to virus challenge, indicated that CPsV resistance was due to pre-activated RNA silencing, but siRNAs accumulation level was not directly correlated to the degree of the triggered virus resistance among the different lines. However, pre-activation of the RNA-silencing machinery and a certain minimum accumulation level of siRNA molecules targeting the viral genome are key factors for creating virus-resistant plants. This is the first report of resistance in citrus plants against a negative-strand RNA virus as CPsV.
Assuntos
Citrus/virologia , Interações Hospedeiro-Patógeno , Vírus de Plantas/metabolismo , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , Southern Blotting , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Ensaio de Imunoadsorção Enzimática , Dados de Sequência Molecular , Vírus de Plantas/genética , RNA Interferente PequenoRESUMO
Citrus psorosis is a serious viral disease affecting citrus trees in many countries. Its causal agent is Citrus psorosis virus (CPsV), the type member of genus Ophiovirus. CPsV infects most important citrus varieties, including oranges, mandarins and grapefruits, as well as hybrids and citrus relatives used as rootstocks. Certification programs have not been sufficient to control the disease and no sources of natural resistance have been found. Pathogen-derived resistance (PDR) can provide an efficient alternative to control viral diseases in their hosts. For this purpose, we have produced 21 independent lines of sweet orange expressing the coat protein gene of CPsV and five of them were challenged with the homologous CPV 4 isolate. Two different viral loads were evaluated to challenge the transgenic plants, but so far, no resistance or tolerance has been found in any line after 1 year of observations. In contrast, after inoculation all lines showed characteristic symptoms of psorosis in the greenhouse. The transgenic lines expressed low and variable amounts of the cp gene and no correlation was found between copy number and transgene expression. One line contained three copies of the cp gene, expressed low amounts of the mRNA and no coat protein. The ORF was cytosine methylated suggesting a PTGS mechanism, although the transformant failed to protect against the viral load used. Possible causes for the failed protection against the CPsV are discussed.
Assuntos
Proteínas do Capsídeo/genética , Citrus/genética , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética , Northern Blotting , Southern Blotting , Citrus/crescimento & desenvolvimento , Citrus/virologia , Ensaio de Imunoadsorção Enzimática , Imunidade Inata/genética , Modelos Genéticos , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
We studied the genetic variability of three genomic regions (p23, p25 and p27 genes) from 11 field Citrus tristeza virus isolates from the two main citrus growing areas of Argentina, a country where the most efficient vector of the virus, Toxoptera citricida, is present for decades. The pathogenicity of the isolates was determinated by biological indexing, single-strand conformation polymorphism analysis showed that most isolates contained high intra-isolate variability. Divergent sequence variants were detected in some isolates, suggesting re-infections of the field plants. Phylogenetic analysis of the predominant sequence variants of each isolate revealed similar grouping of isolates for genes p25 and p27. The analysis of p23 showed two groups contained the severe isolates. Our results showed a high intra-isolate sequence variability suggesting that re-infections could contribute to the observed variability and that the host can play an important role in the selection of the sequence variants present in these isolates.