Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
medRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826461

RESUMO

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

2.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464142

RESUMO

Single Nucleotide Polymorphisms (SNPs) associated with traits typically explain a small part of the trait genetic heritability-with the remainder thought to be distributed throughout the genome. Such SNPs are likely to alter expression levels of biologically relevant genes. Expression Quantitative Trait Locus (eQTL) networks analysis has helped to functionally characterize such variants. We systematically analyze the distribution of SNP heritability for ten traits across 29 tissue-specific eQTL networks. We find that heritability is clustered in a small number or tissue-specific, functionally relevant SNP-gene modules and that the greatest occurs in local "hubs" that are both the cornerstone of the network's modules and tissue-specific regulatory elements. The network structure could thus both amplify the genotype-phenotype connection and buffer the deleterious effect of the genetic variations on other traits. Together, these results define a conceptual framework for understanding complex trait architecture and identifying key mutations carrying most of the heritability.

3.
Genome Biol ; 24(1): 45, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894939

RESUMO

Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.


Assuntos
Redes Reguladoras de Genes , Neoplasias , Humanos , Algoritmos , Software , Multiômica , Biologia Computacional/métodos
4.
Cell Rep Methods ; 2(5): 100218, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35637906

RESUMO

Expression quantitative trait locus (eQTL) analysis associates SNPs with gene expression; these relationships can be represented as a bipartite network with association strength as "edge weights" between SNPs and genes. However, most eQTL networks use binary edge weights based on thresholded FDR estimates: definitions that influence reproducibility and downstream analyses. We constructed twenty-nine tissue-specific eQTL networks using GTEx data and evaluated a comprehensive set of network specifications based on false discovery rates, test statistics, and p values, focusing on the degree centrality-a metric of an SNP or gene node's potential network influence. We found a thresholded Benjamini-Hochberg q value weighted by the Z-statistic balances metric reproducibility and computational efficiency. Our estimated gene degrees positively correlate with gene degrees in gene regulatory networks, demonstrating that these networks are complementary in understanding regulation. Gene degrees also correlate with genetic diversity, and heritability analyses show that highly connected nodes are enriched for tissue-relevant traits.


Assuntos
Redes Reguladoras de Genes , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Redes Reguladoras de Genes/genética , Fenótipo , Genômica
6.
Genome Res ; 32(3): 524-533, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35193937

RESUMO

Understanding how each person's unique genotype influences their individual patterns of gene regulation has the potential to improve our understanding of human health and development, and to refine genotype-specific disease risk assessments and treatments. However, the effects of genetic variants are not typically considered when constructing gene regulatory networks, despite the fact that many disease-associated genetic variants are thought to have regulatory effects, including the disruption of transcription factor (TF) binding. We developed EGRET (Estimating the Genetic Regulatory Effect on TFs), which infers a genotype-specific gene regulatory network for each individual in a study population. EGRET begins by constructing a genotype-informed TF-gene prior network derived using TF motif predictions, expression quantitative trait locus (eQTL) data, individual genotypes, and the predicted effects of genetic variants on TF binding. It then uses a technique known as message passing to integrate this prior network with gene expression and TF protein-protein interaction data to produce a refined, genotype-specific regulatory network. We used EGRET to infer gene regulatory networks for two blood-derived cell lines and identified genotype-associated, cell line-specific regulatory differences that we subsequently validated using allele-specific expression, chromatin accessibility QTLs, and differential ChIP-seq TF binding. We also inferred EGRET networks for three cell types from each of 119 individuals and identified cell type-specific regulatory differences associated with diseases related to those cell types. EGRET is, to our knowledge, the first method that infers networks reflective of individual genetic variation in a way that provides insight into the genetic regulatory associations driving complex phenotypes.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Cromatina , Imunoprecipitação da Cromatina , Genótipo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nucleic Acids Res ; 50(D1): D610-D621, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34508353

RESUMO

Gene regulation plays a fundamental role in shaping tissue identity, function, and response to perturbation. Regulatory processes are controlled by complex networks of interacting elements, including transcription factors, miRNAs and their target genes. The structure of these networks helps to determine phenotypes and can ultimately influence the development of disease or response to therapy. We developed GRAND (https://grand.networkmedicine.org) as a database for computationally-inferred, context-specific gene regulatory network models that can be compared between biological states, or used to predict which drugs produce changes in regulatory network structure. The database includes 12 468 genome-scale networks covering 36 human tissues, 28 cancers, 1378 unperturbed cell lines, as well as 173 013 TF and gene targeting scores for 2858 small molecule-induced cell line perturbation paired with phenotypic information. GRAND allows the networks to be queried using phenotypic information and visualized using a variety of interactive tools. In addition, it includes a web application that matches disease states to potentially therapeutic small molecule drugs using regulatory network properties.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Redes Reguladoras de Genes/genética , Software , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , MicroRNAs/classificação , MicroRNAs/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
8.
Genomics ; 113(6): 4184-4195, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763026

RESUMO

Cigarette smoking induces a profound transcriptomic and systemic inflammatory response. Previous studies have focused on gene level differential expression of smoking, but the genome-wide effects of smoking on alternative isoform regulation have not yet been described. We conducted RNA sequencing in whole-blood samples of 454 current and 767 former smokers in the COPDGene Study, and we analyzed the effects of smoking on differential usage of isoforms and exons. At 10% FDR, we detected 3167 differentially expressed genes, 945 differentially used isoforms and 160 differentially used exons. Isoform switch analysis revealed widespread 3' UTR lengthening associated with cigarette smoking. The lengthening of these 3' UTRs was consistent with alternative usage of distal polyadenylation sites, and these extended 3' UTR regions were significantly enriched with functional sequence elements including microRNA and RNA-protein binding sites. These findings warrant further studies on alternative polyadenylation events as potential biomarkers and novel therapeutic targets for smoking-related diseases.


Assuntos
Fumar Cigarros , Poliadenilação , Regiões 3' não Traduzidas , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Isoformas de Proteínas/genética , Fumar/efeitos adversos , Fumar/genética
9.
PLoS Genet ; 17(11): e1009912, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784346

RESUMO

α1-anti-trypsin (A1AT), encoded by SERPINA1, is a neutrophil elastase inhibitor that controls the inflammatory response in the lung. Severe A1AT deficiency increases risk for Chronic Obstructive Pulmonary Disease (COPD), however, the role of A1AT in COPD in non-deficient individuals is not well known. We identify a 2.1-fold increase (p = 2.5x10-6) in the use of a distal poly-adenylation site in primary lung tissue RNA-seq in 82 COPD cases when compared to 64 controls and replicate this in an independent study of 376 COPD and 267 controls. This alternative polyadenylation event involves two sites, a proximal and distal site, 61 and 1683 nucleotides downstream of the A1AT stop codon. To characterize this event, we measured the distal ratio in human primary tissue short read RNA-seq data and corroborated our results with long read RNA-seq data. Integrating these results with 3' end RNA-seq and nanoluciferase reporter assay experiments we show that use of the distal site yields mRNA transcripts with over 50-fold decreased translation efficiency and A1AT expression. We identified seven RNA binding proteins using enhanced CrossLinking and ImmunoPrecipitation precipitation (eCLIP) with one or more binding sites in the SERPINA1 3' UTR. We combined these data with measurements of the distal ratio in shRNA knockdown experiments, nuclear and cytoplasmic fractionation, and chemical RNA structure probing. We identify Quaking Homolog (QKI) as a modulator of SERPINA1 mRNA translation and confirm the role of QKI in SERPINA1 translation with luciferase reporter assays. Analysis of single-cell RNA-seq showed differences in the distribution of the SERPINA1 distal ratio among hepatocytes, macrophages, αß-Tcells and plasma cells in the liver. Alveolar Type 1,2, dendritic cells and macrophages also vary in their distal ratio in the lung. Our work reveals a complex post-transcriptional mechanism that regulates alternative polyadenylation and A1AT expression in COPD.


Assuntos
Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , alfa 1-Antitripsina/genética , Linhagem Celular , Códon de Terminação/genética , Regulação da Expressão Gênica/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Poliadenilação/genética , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA-Seq , Análise de Célula Única , Linfócitos T/metabolismo
10.
Proc AAAI Conf Artif Intell ; 35(11): 10263-10272, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34707916

RESUMO

Bipartite network inference is a ubiquitous problem across disciplines. One important example in the field molecular biology is gene regulatory network inference. Gene regulatory networks are an instrumental tool aiding in the discovery of the molecular mechanisms driving diverse diseases, including cancer. However, only noisy observations of the projections of these regulatory networks are typically assayed. In an effort to better estimate regulatory networks from their noisy projections, we formulate a non-convex but analytically tractable optimization problem called OTTER. This problem can be interpreted as relaxed graph matching between the two projections of the bipartite network. OTTER's solutions can be derived explicitly and inspire a spectral algorithm, for which we provide network recovery guarantees. We also provide an alternative approach based on gradient descent that is more robust to noise compared to the spectral algorithm. Interestingly, this gradient descent approach resembles the message passing equations of an established gene regulatory network inference method, PANDA. Using three cancer-related data sets, we show that OTTER outperforms state-of-the-art inference methods in predicting transcription factor binding to gene regulatory regions. To encourage new graph matching applications to this problem, we have made all networks and validation data publicly available.

11.
Front Genet ; 12: 649942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968133

RESUMO

Profiling of whole transcriptomes has become a cornerstone of molecular biology and an invaluable tool for the characterization of clinical phenotypes and the identification of disease subtypes. Analyses of these data are becoming ever more sophisticated as we move beyond simple comparisons to consider networks of higher-order interactions and associations. Gene regulatory networks (GRNs) model the regulatory relationships of transcription factors and genes and have allowed the identification of differentially regulated processes in disease systems. In this perspective, we discuss gene targeting scores, which measure changes in inferred regulatory network interactions, and their use in identifying disease-relevant processes. In addition, we present an example analysis for pancreatic ductal adenocarcinoma (PDAC), demonstrating the power of gene targeting scores to identify differential processes between complex phenotypes, processes that would have been missed by only performing differential expression analysis. This example demonstrates that gene targeting scores are an invaluable addition to gene expression analysis in the characterization of diseases and other complex phenotypes.

12.
NPJ Syst Biol Appl ; 7(1): 8, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514755

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to adapt to diverse stresses in its host environment is crucial for pathogenesis. Two essential Mtb serine/threonine protein kinases, PknA and PknB, regulate cell growth in response to environmental stimuli, but little is known about their downstream effects. By combining RNA-Seq data, following treatment with either an inhibitor of both PknA and PknB or an inactive control, with publicly available ChIP-Seq and protein-protein interaction data for transcription factors, we show that the Mtb transcription factor (TF) regulatory network propagates the effects of kinase inhibition and leads to widespread changes in regulatory programs involved in cell wall integrity, stress response, and energy production, among others. We also observe that changes in TF regulatory activity correlate with kinase-specific phosphorylation of those TFs. In addition to characterizing the downstream regulatory effects of PknA/PknB inhibition, this demonstrates the need for regulatory network approaches that can incorporate signal-driven transcription factor modifications.


Assuntos
Proteínas de Bactérias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética
13.
Cell Rep ; 31(12): 107795, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579922

RESUMO

Sex differences manifest in many diseases and may drive sex-specific therapeutic responses. To understand the molecular basis of sex differences, we evaluated sex-biased gene regulation by constructing sample-specific gene regulatory networks in 29 human healthy tissues using 8,279 whole-genome expression profiles from the Genotype-Tissue Expression (GTEx) project. We find sex-biased regulatory network structures in each tissue. Even though most transcription factors (TFs) are not differentially expressed between males and females, many have sex-biased regulatory targeting patterns. In each tissue, genes that are differentially targeted by TFs between the sexes are enriched for tissue-related functions and diseases. In brain tissue, for example, genes associated with Parkinson's disease and Alzheimer's disease are targeted by different sets of TFs in each sex. Our systems-based analysis identifies a repertoire of TFs that play important roles in sex-specific architecture of gene regulatory networks, and it underlines sex-specific regulatory processes in both health and disease.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Especificidade de Órgãos/genética , Caracteres Sexuais , Cromossomos Humanos X/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
PLoS Pathog ; 16(4): e1008452, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32255801

RESUMO

The Mycobacterium tuberculosis Ser/Thr protein kinases PknA and PknB are essential for growth and have been proposed as possible drug targets. We used a titratable conditional depletion system to investigate the functions of these kinases. Depletion of PknA or PknB or both kinases resulted in growth arrest, shortening of cells, and time-dependent loss of acid-fast staining with a concomitant decrease in mycolate synthesis and accumulation of trehalose monomycolate. Depletion of PknA and/or PknB resulted in markedly increased susceptibility to ß-lactam antibiotics, and to the key tuberculosis drug rifampin. Phosphoproteomic analysis showed extensive changes in protein phosphorylation in response to PknA depletion and comparatively fewer changes with PknB depletion. These results identify candidate substrates of each kinase and suggest specific and coordinate roles for PknA and PknB in regulating multiple essential physiologies. These findings support these kinases as targets for new antituberculosis drugs and provide a valuable resource for targeted investigation of mechanisms by which protein phosphorylation regulates pathways required for growth and virulence in M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Bactérias/genética , Fatores Corda/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Tuberculose/microbiologia
15.
Br J Cancer ; 122(4): 569-577, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31806877

RESUMO

BACKGROUND: Genome-wide association studies (GWASes) have identified many noncoding germline single-nucleotide polymorphisms (SNPs) that are associated with an increased risk of developing cancer. However, how these SNPs affect cancer risk is still largely unknown. METHODS: We used a systems biology approach to analyse the regulatory role of cancer-risk SNPs in thirteen tissues. By using data from the Genotype-Tissue Expression (GTEx) project, we performed an expression quantitative trait locus (eQTL) analysis. We represented both significant cis- and trans-eQTLs as edges in tissue-specific eQTL bipartite networks. RESULTS: Each tissue-specific eQTL network is organised into communities that group sets of SNPs and functionally related genes. When mapping cancer-risk SNPs to these networks, we find that in each tissue, these SNPs are significantly overrepresented in communities enriched for immune response processes, as well as tissue-specific functions. Moreover, cancer-risk SNPs are more likely to be 'cores' of their communities, influencing the expression of many genes within the same biological processes. Finally, cancer-risk SNPs preferentially target oncogenes and tumour-suppressor genes, suggesting that they may alter the expression of these key cancer genes. CONCLUSIONS: This approach provides a new way of understanding genetic effects on cancer risk and provides a biological context for interpreting the results of GWAS cancer studies.


Assuntos
Genes Supressores de Tumor , Predisposição Genética para Doença/genética , Neoplasias/genética , Neoplasias/imunologia , Oncogenes/genética , Polimorfismo de Nucleotídeo Único , Humanos , Locos de Características Quantitativas
16.
Elife ; 82019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31343404

RESUMO

Murine studies have linked TGF-ß signaling to emphysema, and human genome-wide association studies (GWAS) studies of lung function and COPD have identified associated regions near genes in the TGF-ß superfamily. However, the functional regulatory mechanisms at these loci have not been identified. We performed the largest GWAS of emphysema patterns to date, identifying 10 GWAS loci including an association peak spanning a 200 kb region downstream from TGFB2. Integrative analysis of publicly available eQTL, DNaseI, and chromatin conformation data identified a putative functional variant, rs1690789, that may regulate TGFB2 expression in human fibroblasts. Using chromatin conformation capture, we confirmed that the region containing rs1690789 contacts the TGFB2 promoter in fibroblasts, and CRISPR/Cas-9 targeted deletion of a ~ 100 bp region containing rs1690789 resulted in decreased TGFB2 expression in primary human lung fibroblasts. These data provide novel mechanistic evidence linking genetic variation affecting the TGF-ß pathway to emphysema in humans.


Assuntos
Enfisema/genética , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Pulmão/patologia , Fator de Crescimento Transformador beta2/biossíntese , Idoso , Idoso de 80 Anos ou mais , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta2/genética , Estados Unidos
17.
iScience ; 5: 80-89, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30240647

RESUMO

Genotype-to-phenotype association studies typically use macroscopic physiological measurements or molecular readouts as quantitative traits. There are comparatively few suitable quantitative traits available between cell and tissue length scales, a limitation that hinders our ability to identify variants affecting phenotype at many clinically informative levels. Here we show that quantitative image features, automatically extracted from histopathological imaging data, can be used for image quantitative trait loci (iQTLs) mapping and variant discovery. Using thyroid pathology images, clinical metadata, and genomics data from the Genotype-Tissue Expression (GTEx) project, we establish and validate a quantitative imaging biomarker for immune cell infiltration. A total of 100,215 variants were selected for iQTL profiling and tested for genotype-phenotype associations with our quantitative imaging biomarker. Significant associations were found in HDAC9 and TXNDC5. We validated the TXNDC5 association using GTEx cis-expression QTL data and an independent hypothyroidism dataset from the Electronic Medical Records and Genomics network.

18.
mBio ; 9(2)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511081

RESUMO

Tuberculosis is the leading killer among infectious diseases worldwide. Increasing multidrug resistance has prompted new approaches for tuberculosis drug development, including targeted inhibition of virulence determinants and of signaling cascades that control many downstream pathways. We used a multisystem approach to determine the effects of a potent small-molecule inhibitor of the essential Mycobacterium tuberculosis Ser/Thr protein kinases PknA and PknB. We observed differential levels of phosphorylation of many proteins and extensive changes in levels of gene expression, protein abundance, cell wall lipids, and intracellular metabolites. The patterns of these changes indicate regulation by PknA and PknB of several pathways required for cell growth, including ATP synthesis, DNA synthesis, and translation. These data also highlight effects on pathways for remodeling of the mycobacterial cell envelope via control of peptidoglycan turnover, lipid content, a SigE-mediated envelope stress response, transmembrane transport systems, and protein secretion systems. Integrated analysis of phosphoproteins, transcripts, proteins, and lipids identified an unexpected pathway whereby threonine phosphorylation of the essential response regulator MtrA decreases its DNA binding activity. Inhibition of this phosphorylation is linked to decreased expression of genes for peptidoglycan turnover, and of genes for mycolyl transferases, with concomitant changes in mycolates and glycolipids in the cell envelope. These findings reveal novel roles for PknA and PknB in regulating multiple essential cell functions and confirm that these kinases are potentially valuable targets for new antituberculosis drugs. In addition, the data from these linked multisystems provide a valuable resource for future targeted investigations into the pathways regulated by these kinases in the M. tuberculosis cell.IMPORTANCE Tuberculosis is the leading killer among infectious diseases worldwide. Increasing drug resistance threatens efforts to control this epidemic; thus, new antitubercular drugs are urgently needed. We performed an integrated, multisystem analysis of Mycobacterium tuberculosis responses to inhibition of its two essential serine/threonine protein kinases. These kinases allow the bacterium to adapt to its environment by phosphorylating cellular proteins in response to extracellular signals. We identified differentially phosphorylated proteins, downstream changes in levels of specific mRNA and protein abundance, and alterations in the metabolite and lipid content of the cell. These results include changes previously linked to growth arrest and also reveal new roles for these kinases in regulating essential processes, including growth, stress responses, transport of proteins and other molecules, and the structure of the mycobacterial cell envelope. Our multisystem data identify PknA and PknB as promising targets for drug development and provide a valuable resource for future investigation of their functions.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium tuberculosis/genética , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Hum Genomics ; 12(1): 1, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335020

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) significantly associated with chronic obstructive pulmonary disease (COPD). However, many genetic variants show suggestive evidence for association but do not meet the strict threshold for genome-wide significance. Integrative analysis of multiple omics datasets has the potential to identify novel genes involved in disease pathogenesis by leveraging these variants in a functional, regulatory context. RESULTS: We performed expression quantitative trait locus (eQTL) analysis using genome-wide SNP genotyping and gene expression profiling of lung tissue samples from 86 COPD cases and 31 controls, testing for SNPs associated with gene expression levels. These results were integrated with a prior COPD GWAS using an ensemble statistical and network methods approach to identify relevant genes and observe them in the context of overall genetic control of gene expression to highlight co-regulated genes and disease pathways. We identified 250,312 unique SNPs and 4997 genes in the cis(local)-eQTL analysis (5% false discovery rate). The top gene from the integrative analysis was MAPT, a gene recently identified in an independent GWAS of lung function. The genes HNRNPAB and PCBP2 with RNA binding activity and the gene ACVR1B were identified in network communities with validated disease relevance. CONCLUSIONS: The integration of lung tissue gene expression with genome-wide SNP genotyping and subsequent intersection with prior GWAS and omics studies highlighted candidate genes within COPD loci and in communities harboring known COPD genes. This integration also identified novel disease genes in sub-threshold regions that would otherwise have been missed through GWAS.


Assuntos
Predisposição Genética para Doença , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/genética , Receptores de Ativinas Tipo I/genética , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Genômica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Locos de Características Quantitativas/genética , Proteínas de Ligação a RNA/genética , Proteínas tau/genética
20.
BMC Bioinformatics ; 18(1): 437, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974199

RESUMO

BACKGROUND: Although ultrahigh-throughput RNA-Sequencing has become the dominant technology for genome-wide transcriptional profiling, the vast majority of RNA-Seq studies typically profile only tens of samples, and most analytical pipelines are optimized for these smaller studies. However, projects are generating ever-larger data sets comprising RNA-Seq data from hundreds or thousands of samples, often collected at multiple centers and from diverse tissues. These complex data sets present significant analytical challenges due to batch and tissue effects, but provide the opportunity to revisit the assumptions and methods that we use to preprocess, normalize, and filter RNA-Seq data - critical first steps for any subsequent analysis. RESULTS: We find that analysis of large RNA-Seq data sets requires both careful quality control and the need to account for sparsity due to the heterogeneity intrinsic in multi-group studies. We developed Yet Another RNA Normalization software pipeline (YARN), that includes quality control and preprocessing, gene filtering, and normalization steps designed to facilitate downstream analysis of large, heterogeneous RNA-Seq data sets and we demonstrate its use with data from the Genotype-Tissue Expression (GTEx) project. CONCLUSIONS: An R package instantiating YARN is available at http://bioconductor.org/packages/yarn .


Assuntos
Bases de Dados Genéticas , Especificidade de Órgãos/genética , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Anotação de Sequência Molecular , Análise de Componente Principal , Controle de Qualidade , Padrões de Referência , Tamanho da Amostra , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...