Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(10): 5074-5077, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332676

RESUMO

Materials based on molybdenum sulfide are known as efficient hydrogen evolution reaction (HER) catalysts. As the binding site for H atoms on molybdenum sulfides for the catalytic process is under debate, [HMo3 S13 ]- is an interesting molecular model system to address this question. Herein, we probe the [HMo3 S13 ]- cluster in the gas phase by coupling Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) with infrared multiple photon dissociation (IRMPD) spectroscopy. Our investigations show one distinct S-H stretching vibration at 2450 cm-1 . Thermochemical arguments based on DFT calculations strongly suggest a terminal disulfide unit as the H adsorption site.

2.
J Am Soc Mass Spectrom ; 30(10): 1946-1955, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420847

RESUMO

Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo4O13]2-, [HMo4O13]-, and [CH3Mo4O13]- by a combination of collision-induced dissociation (CID) experiments and quantum chemical calculations. According to calculations, the common structural motif is an eight-membered ring composed of four MoO2 units and four O atoms. The 13th O atom is located above the center of the ring and connects two to four Mo centers. For [Mo4O13]2- and [HMo4O13]-, dissociation requires opening or rearrangement of the ring structure, which is quite facile for the doubly charged [Mo4O13]2-, but energetically more demanding for [HMo4O13]-. In the latter case, the hydrogen atom is found to stay preferentially with the negatively charged fragments [HMo2O7]- or [HMoO4]-. The doubly charged species [Mo4O13]2- loses one MoO3 unit at low energies while Coulomb explosion into the complementary fragments [Mo2O6]- and [Mo2O7]- dominates at elevated collision energies. [CH3Mo4O13]- affords rearrangements of the methyl group with low barriers, preferentially eliminating formaldehyde, while the ring structure remains intact. [CH3Mo4O13]- also reacts efficiently with water, leading to methanol or formaldehyde elimination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...