Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 271: 106908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608566

RESUMO

Short chain per- and polyfluoroalkyl substances (PFAS), including hexafluoropropylene oxide dimer acid (GenX) and perfluorobutane sulfonate (PFBS), are replacement chemicals for environmentally persistent, long-chain PFAS. Although GenX and PFBS have been detected in surface and ground water worldwide, few studies provide information on the metabolic alterations or risks associated with their exposures. In this study, larval zebrafish were used to investigate the toxicity of early-life exposure to GenX or PFBS. Zebrafish were chronically exposed from 4 h post-fertilization (hpf) to 6 days post-fertilization (dpf) to 150 µM GenX or 95.0 µM PFBS. Ultra-high-performance liquid chromatography paired with high-resolution mass spectrometry was used to quantify uptake of GenX and PFBS into zebrafish larvae and perform targeted and untargeted metabolomics. Our results indicate that PFBS was 20.4 % more readily absorbed into the zebrafish larvae compared to GenX. Additionally, PFBS exposure significantly altered 13 targeted metabolites and 21 metabolic pathways, while GenX exposure significantly altered 1 targeted metabolite and 17 metabolic pathways. Exposure to GenX, and to an even greater extent PFBS, resulted in a number of altered metabolic pathways in the amino acid metabolism, with other significant alterations in the carbohydrate, lipid, cofactors and vitamins, nucleotide, and xenobiotics metabolisms. Our results indicate that GenX and PFBS impact the zebrafish metabolome, with implications of global metabolic dysregulation, particularly in metabolic pathways relating to growth and development.


Assuntos
Metabolômica , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Poluentes Químicos da Água/toxicidade , Fluorocarbonos/toxicidade , Larva/efeitos dos fármacos , Larva/metabolismo , Larva/crescimento & desenvolvimento , Metaboloma/efeitos dos fármacos
2.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659956

RESUMO

Recent developments in cardiac macrophage biology have broadened our understanding of the critical functions of macrophages in the heart. As a result, there is further interest in understanding the independent contributions of distinct subsets of macrophage to cardiac development and function. Here, we demonstrate that genetic loss of interferon regulatory factor 8 (Irf8)-positive embryonic-derived macrophages significantly disrupts cardiac conduction, chamber function, and innervation in adult zebrafish. At 4 months post-fertilization (mpf), homozygous irf8st96/st96 mutants have significantly shortened atrial action potential duration and significant differential expression of genes involved in cardiac contraction. Functional in vivo assessments via electro- and echocardiograms at 12 mpf reveal that irf8 mutants are arrhythmogenic and exhibit diastolic dysfunction and ventricular stiffening. To identify the molecular drivers of the functional disturbances in irf8 null zebrafish, we perform single cell RNA sequencing and immunohistochemistry, which reveal increased leukocyte infiltration, epicardial activation, mesenchymal gene expression, and fibrosis. Irf8 null hearts are also hyperinnervated and have aberrant axonal patterning, a phenotype not previously assessed in the context of cardiac macrophage loss. Gene ontology analysis supports a novel role for activated epicardial-derived cells (EPDCs) in promoting neurogenesis and neuronal remodeling in vivo. Together, these data uncover significant cardiac abnormalities following embryonic macrophage loss and expand our knowledge of critical macrophage functions in heart physiology and governing homeostatic heart health.

3.
Environ Health Perspect ; 131(11): 117008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966802

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are biopersistent, global pollutants. Although some in vitro and epidemiological studies have explored the neurotoxic potential of perfluorooctane sulfonate (PFOS), a prevalent PFAS congener, it is unknown how developmental PFOS exposure affects neuronal signaling, microglia development, and microglial-neuron communication. OBJECTIVES: We sought to determine the extent to which PFOS exposure disrupts brain health, neuronal activity, and microglia-neuron communication during development. In addition, although PFOS impairs humoral immunity, its impact on innate immune cells, including resident microglia, is unclear. As such, we investigated whether microglia are cellular targets of PFOS, and, if so, whether disrupted microglial development or function could contribute to or is influenced by PFOS-induced neural dysfunction. METHODS: Zebrafish were chronically exposed to either a control solution [0.1% dimethyl sulfoxide (DMSO)], 7µM PFOS, 14µM PFOS, 28µM PFOS, or 64µM perfluorooctanoic acid (PFOA). We used in vivo imaging and gene expression analysis to assess microglial populations in the developing brain and to determine shifts in the microglia state. We functionally challenged microglia state using a brain injury model and, to assess the neuronal signaling environment, performed functional neuroimaging experiments using the photoconvertible calcium indicator calcium-modulated photoactivatable ratiometric integrator (CaMPARI). These studies were paired with optogenetic manipulations of neurons and microglia, an untargeted metabolome-wide association study (MWAS), and behavioral assays. RESULTS: Developmental PFOS exposure resulted in a shift away from the homeostatic microglia state, as determined by functional and morphological differences in exposed larvae, as well as up-regulation of the microglia activation gene p2ry12. PFOS-induced effects on microglia state exacerbated microglia responses to brain injury in the absence of increased cell death or inflammation. PFOS exposure also heightened neural activity, and optogenetic silencing of neurons or microglia independently was sufficient to normalize microglial responses to injury. An untargeted MWAS of larval brains revealed PFOS-exposed larvae had neurochemical signatures of excitatory-inhibitory imbalance. Behaviorally, PFOS-exposed larvae also exhibited anxiety-like thigmotaxis. To test whether the neuronal and microglial phenotypes were specific to PFOS, we exposed embryos to PFOA, a known immunotoxic PFAS. PFOA did not alter thigmotaxis, neuronal activity, or microglial responses, further supporting a role for neuronal activity as a critical modifier of microglial function following PFOS exposure. DISCUSSION: Together, this study provides, to our knowledge, the first detailed account of the effects of PFOS exposure on neural cell types in the developing brain in vivo and adds neuronal hyperactivity as an important end point to assess when studying the impact of toxicant exposures on microglia function. https://doi.org/10.1289/EHP12861.


Assuntos
Lesões Encefálicas , Fluorocarbonos , Animais , Microglia , Peixe-Zebra , Cálcio , Fluorocarbonos/toxicidade
4.
Environ Pollut ; 337: 122499, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660771

RESUMO

Human exposure to environmental pollutants can disrupt embryonic development and impact juvenile and adult health outcomes by adversely affecting cell and organ function. Notwithstanding, environmental contamination continues to increase due to industrial development, insufficient regulations, and the mobilization of pollutants as a result of extreme weather events. Dioxins are a class of structurally related persistent organic pollutants that are highly toxic, carcinogenic, and teratogenic. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent dioxin compound and has been shown to induce toxic effects in developing organisms by activating the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor targeted by multiple persistent organic pollutants. Contaminant-induced AHR activation results in malformations of the craniofacial cartilages and neurocranium; however, the mechanisms mediating these phenotypes are not well understood. In this study, we utilized the optically transparent zebrafish model to elucidate novel cellular targets and potential transcriptional targets underlying TCDD-induced craniofacial malformations. To this end, we exposed zebrafish embryos at 4 h post fertilization to TCDD and employed a mixed-methods approach utilizing immunohistochemistry staining, transgenic reporter lines, fixed and in vivo confocal imaging, and timelapse microscopy to determine the targets mediating TCDD-induced craniofacial phenotypes. Our data indicate that embryonic TCDD exposure reduced jaw and pharyngeal arch Sox10+ chondrocytes and Tcf21+ pharyngeal mesoderm progenitors. Exposure to TCDD correspondingly led to a reduction in collagen type II deposition in Sox10+ domains. Embryonic TCDD exposure impaired development of tissues derived from or guided by Tcf21+ progenitors, namely: nerves, muscle, and vasculature. Specifically, TCDD exposure disrupted development of the hyoid and mandibular arch muscles, decreased neural innervation of the jaw, resulted in compression of cranial nerves V and VII, and led to jaw vasculature malformations. Collectively, these findings reveal novel structural targets and potential transcriptional targets of TCDD-induced toxicity, showcasing how contaminant exposures lead to congenital craniofacial malformations.


Assuntos
Dioxinas , Poluentes Ambientais , Dibenzodioxinas Policloradas , Animais , Gravidez , Feminino , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Dioxinas/toxicidade , Dioxinas/metabolismo , Peixe-Zebra/metabolismo , Poluentes Orgânicos Persistentes/metabolismo , Proteínas de Peixe-Zebra/genética , Dibenzodioxinas Policloradas/toxicidade , Dibenzodioxinas Policloradas/metabolismo , Poluentes Ambientais/toxicidade , Músculos/metabolismo
5.
Biol Reprod ; 109(5): 586-600, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561446

RESUMO

Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing datasets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes, but not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature gonad.


Assuntos
Células Endoteliais , Peixe-Zebra , Animais , Camundongos , Feminino , Peixe-Zebra/genética , Gônadas , Ovário , Animais Geneticamente Modificados
6.
Neurotoxicology ; 97: 109-119, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244562

RESUMO

Developmental exposure to environmental toxicants has been linked to the onset of neurological disorders and diseases. Despite substantial advances in the field of neurotoxicology, there remain significant knowledge gaps in our understanding of cellular targets and molecular mechanisms that mediate the neurotoxicological endpoints associated with exposure to both legacy contaminants and emerging contaminants of concern. Zebrafish are a powerful neurotoxicological model given their high degree sequence conservation with humans and the similarities they share with mammals in micro- and macro-level brain structures. Many zebrafish studies have effectively utilized behavioral assays to predict the neurotoxic potential of different compounds, but behavioral phenotypes are rarely able to predict the brain structures, cell types, or mechanisms affected by chemical exposures. Calcium-modulated photoactivatable ratiometric integrator (CaMPARI), a recently developed genetically-encoded calcium indicator, undergoes a permanent green to red switch in the presence of elevated intracellular Ca2+ concentrations and 405-nm light, which allows for a "snapshot" of brain activity in freely-swimming larvae. To determine whether behavioral results are predictive of patterns of neuronal activity, we assessed the effects of three common neurotoxicants, ethanol, 2,2',3,5',6-pentachlorobiphenyl (PCB 95), and monoethylhexyl phthalate (MEHP), on both brain activity and behavior by combining the behavioral light/dark assay with CaMPARI imaging. We demonstrate that brain activity profiles and behavioral phenotypes are not always concordant and, therefore, behavior alone is not sufficient to understand how toxicant exposure affects neural development and network dynamics. We conclude that pairing behavioral assays with functional neuroimaging tools such as CaMPARI provides a more comprehensive understanding of the neurotoxic endpoints of compounds while still offering a relatively high throughput approach to toxicity testing.


Assuntos
Cálcio , Síndromes Neurotóxicas , Humanos , Animais , Cálcio/metabolismo , Peixe-Zebra , Neurônios , Natação , Encéfalo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Mamíferos
7.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36712047

RESUMO

Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage cells arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing data sets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes that were not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature, differentiated gonad.

8.
Front Mol Neurosci ; 15: 1032302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523606

RESUMO

2,3,7,8-tetrachlorodibenzo-[p]-dioxin (TCDD) is a persistent global pollutant that exhibits a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. Epidemiological studies have associated AHR agonist exposure with multiple human neuropathologies. Consistent with the human data, research studies using laboratory models have linked pollutant-induced AHR activation to disruptions in learning and memory as well as motor impairments. Our understanding of endogenous AHR functions in brain development is limited and, correspondingly, scientists are still determining which cell types and brain regions are sensitive to AHR modulation. To identify novel phenotypes resulting from pollutant-induced AHR activation and ahr2 loss of function, we utilized the optically transparent zebrafish model. Early embryonic TCDD exposure impaired embryonic brain morphogenesis, resulted in ventriculomegaly, and disrupted neural connectivity in the optic tectum, habenula, cerebellum, and olfactory bulb. Altered neural network formation was accompanied by reduced expression of synaptic vesicle 2. Loss of ahr2 function also impaired nascent network development, but did not affect gross brain or ventricular morphology. To determine whether neural AHR activation was sufficient to disrupt connectivity, we used the Gal4/UAS system to express a constitutively active AHR specifically in differentiated neurons and observed disruptions only in the cerebellum; thus, suggesting that the phenotypes resulting from global AHR activation likely involve multiple cell types. Consistent with this hypothesis, we found that TCDD exposure reduced the number of oligodendrocyte precursor cells and their derivatives. Together, our findings indicate that proper modulation of AHR signaling is necessary for the growth and maturation of the embryonic zebrafish brain.

9.
Aquat Toxicol ; 234: 105786, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33735685

RESUMO

The aryl hydrocarbon receptor (AHR) has endogenous functions in mammalian vascular development and is necessary for mediating the toxic effects of a number of environmental contaminants. Studies in mice have demonstrated that AHR is necessary for the formation of the renal, retinal, and hepatic vasculature. In fish, exposure to the prototypic AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces expression of the AHR biomarker cyp1a throughout the developing vasculature and produces vascular malformations in the head and heart. However, it is not known whether the vascular structures that are sensitive to loss of AHR function are also disrupted by aberrant AHR activation. Here, we report that TCDD-exposure in zebrafish disrupts development of 1) the subintestinal venous plexus (SIVP), which vascularizes the developing liver, kidney, gut, and pancreas, and 2) the superficial annular vessel (SAV), an essential component of the retinal vasculature. Furthermore, we determined that TCDD exposure increased the expression of bmp4, a key molecular mediator of SIVP morphogenesis. We hypothesize that the observed SIVP phenotypes contribute to one of the hallmarks of TCDD exposure in fish - the failure of the yolk sac to absorb. Together, our data describe novel TCDD-induced vascular phenotypes and provide molecular insight into critical factors producing the observed vascular malformations.


Assuntos
Dibenzodioxinas Policloradas/toxicidade , Veia Retiniana/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Fígado/irrigação sanguínea , Veia Retiniana/crescimento & desenvolvimento , Veias/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
J Neurosci Res ; 98(6): 981-983, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227499

RESUMO

The cover photo shows the developing zebrafish nervous system at 5 days post-fertilization. Axon tracts are labeled with an anti-acetylated alpha tubulin antibody. The image, which was acquired on a Zeiss LSM 880 confocal microscope, is a maximum intensity projection of a z-stack that has been color-coded for depth. Major brain regions such as the olfactory bulb, forebrain, habenula, optic tectum, cerebellum, hindbrain, and eye are identifiable. This image is part of a study (Plavicki Lab, Brown University) focused on understanding the impact of toxicant exposures on brain development and activity with the goal of identifyingenvironmental factors that contribute to the etiology of neurodevelopmental disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Exposição Ambiental , Poluentes Ambientais/toxicidade , Animais , Modelos Animais , Peixe-Zebra
11.
Sci Rep ; 8(1): 13906, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224706

RESUMO

The high mobility group transcription factor SOX9 is expressed in stem cells, progenitor cells, and differentiated cell-types in developing and mature organs. Exposure to a variety of toxicants including dioxin, di(2-ethylhexyl) phthalate, 6:2 chlorinated polyfluorinated ether sulfonate, and chlorpyrifos results in the downregulation of tetrapod Sox9 and/or zebrafish sox9b. Disruption of Sox9/sox9b function through environmental exposures or genetic mutations produce a wide range of phenotypes and adversely affect organ development and health. We generated a dominant-negative sox9b (dnsox9b) to inhibit sox9b target gene expression and used the Gal4/UAS system to drive dnsox9b specifically in cardiomyocytes. Cardiomyocyte-specific inhibition of sox9b function resulted in a decrease in ventricular cardiomyocytes, an increase in atrial cardiomyocytes, hypoplastic endothelial cushions, and impaired epicardial development, ultimately culminating in heart failure. Cardiomyocyte-specific dnsox9b expression significantly reduced end diastolic volume, which corresponded with a decrease in stroke volume, ejection fraction, and cardiac output. Further analysis of isolated cardiac tissue by RT-qPCR revealed cardiomyocyte-specific inhibition of sox9b function significantly decreased the expression of the critical cardiac development genes nkx2.5, nkx2.7, and myl7, as well as c-fos, an immediate early gene necessary for cardiomyocyte progenitor differentiation. Together our studies indicate sox9b transcriptional regulation is necessary for cardiomyocyte development and function.


Assuntos
Coração/embriologia , Morfogênese , Miócitos Cardíacos/metabolismo , Fatores de Transcrição SOX9/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Células HEK293 , Humanos , Camundongos , Fatores de Transcrição SOX9/metabolismo , Transcrição Gênica , Peixe-Zebra
12.
Dev Biol ; 425(2): 101-108, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28365243

RESUMO

The blood-brain barrier (BBB) plays a vital role in the central nervous system (CNS). A comprehensive understanding of BBB development has been hampered by difficulties in observing the differentiation of brain endothelial cells (BECs) in real-time. Here, we generated two transgenic zebrafish line, Tg(glut1b:mCherry) and Tg(plvap:EGFP), to serve as in vivo reporters of BBB development. We showed that barriergenesis (i.e. the induction of BEC differentiation) occurs immediately as endothelial tips cells migrate into the brain parenchyma. Using the Tg(glut1b:mCherry) transgenic line, we performed a genetic screen and identified a zebrafish mutant with a nonsense mutation in gpr124, a gene known to play a role in CNS angiogenesis and BBB development. We also showed that our transgenic plvap:EGFP line, a reporter of immature brain endothelium, is initially expressed in newly formed brain endothelial cells, but subsides during BBB maturation. Our results demonstrate the ability to visualize the in vivo differentiation of brain endothelial cells into the BBB phenotype and establish that CNS angiogenesis and barriergenesis occur simultaneously.


Assuntos
Barreira Hematoencefálica/fisiologia , Neovascularização Fisiológica , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Células Endoteliais/metabolismo , Genes Reporter , Testes Genéticos , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Regiões Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Proteínas de Peixe-Zebra/genética
13.
Dev Dyn ; 245(1): 87-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26472170

RESUMO

BACKGROUND: Distal-less (Dll) encodes a homeodomain transcription factor expressed in developing appendages of organisms throughout metazoan phylogeny. Based on earlier observations in the limbless nematode Caenorhabditis elegans and the primitive chordate amphioxus, it was proposed that Dll had an ancestral function in nervous system development. Consistent with this hypothesis, Dll is necessary for the development of both peripheral and central components of the Drosophila olfactory system. Furthermore, vertebrate homologs of Dll, the Dlx genes, play critical roles in mammalian brain development. RESULTS: Using fluorescent immunohistochemistry of fixed samples and multiphoton microscopy of living Drosophila embryos, we show that Dll is expressed in the embryonic, larval and adult central nervous system and peripheral nervous system (PNS) in embryonic and larval neurons, brain and ventral nerve cord glia, as well as in PNS structures associated with chemosensation. In adult flies, Dll expression is expressed in the optic lobes, central brain regions and the antennal lobes. CONCLUSIONS: Characterization of Dll expression in the developing nervous system supports a role of Dll in neural development and function and establishes an important basis for determining the specific functional roles of Dll in Drosophila development and for comparative studies of Drosophila Dll functions with those of its vertebrate counterparts.


Assuntos
Encéfalo/embriologia , Proteínas de Drosophila/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Neurogênese/genética , Fatores de Transcrição/genética , Animais , Encéfalo/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo
14.
BMC Dev Biol ; 15: 50, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26715205

RESUMO

BACKGROUND: The vertebrate heart consists of three cell layers: the innermost endothelium, the contractile myocardium and the outermost epicardium. The epicardium is vital for heart development and function, and forms from epicardial progenitor cells (EPCs), which migrate to the myocardium during early development. Disruptions in EPC migration and epicardium formation result in a number of cardiac malformations, many of which resemble congenital heart diseases in humans. Hence, it is important to understand the mechanisms that influence EPC migration and spreading in the developing heart. In vitro approaches heretofore have been limited to monolayer epicardial cell cultures, which may not fully capture the complex interactions that can occur between epicardial and myocardial cells in vivo. RESULTS: Here we describe a novel in vitro co-culture assay for assessing epicardial cell migration using embryonic zebrafish hearts. We isolated donor hearts from embryonic zebrafish carrying an epicardial-specific fluorescent reporter after epicardial cells were present on the heart. These were co-cultured with recipient hearts expressing a myocardial-specific fluorescent reporter, isolated prior to EPC migration. Using this method, we can clearly visualize the movement of epicardial cells from the donor heart onto the myocardium of the recipient heart. We demonstrate the utility of this method by showing that epicardial cell migration is significantly delayed or absent when myocardial cells lack contractility and when myocardial cells are deficient in tbx5 expression. CONCLUSIONS: We present a method to assess the migration of epicardial cells in an in vitro assay, wherein the migration of epicardial cells from a donor heart onto the myocardium of a recipient heart in co-culture is monitored and scored. The donor and recipient hearts can be independently manipulated, using either genetic tools or pharmacological agents. This allows flexibility in experimental design for determining the role that target genes/signaling pathways in specific cell types may have on epicardial cell migration.


Assuntos
Movimento Celular/fisiologia , Coração/embriologia , Organogênese/fisiologia , Pericárdio/fisiologia , Peixe-Zebra/embriologia , Animais , Proliferação de Células , Técnicas de Cocultura , Embrião não Mamífero/embriologia , Cardiopatias Congênitas/embriologia , Transplante de Coração/métodos , Miocárdio/metabolismo , Técnicas de Cultura de Órgãos , Pericárdio/citologia , Proteínas com Domínio T/genética
15.
BMC Dev Biol ; 14: 18, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24885804

RESUMO

BACKGROUND: The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms. RESULTS: We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with "donor" hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO injected hearts. CONCLUSIONS: Epicardial cells stem from a heterogeneous population of progenitors, suggesting that the progenitors in the PE have distinct identities. PE cells attach to the heart via a cellular bridge and free-floating cell clusters. Pericardiac fluid advections are not necessary for the development of the PE cluster, however heartbeat is required for epicardium formation. Epicardium formation can occur in culture without normal hydrodynamic and hemodynamic forces, but not without contraction.


Assuntos
Movimento Celular , Modelos Biológicos , Pericárdio/citologia , Células-Tronco/citologia , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Frequência Cardíaca/fisiologia , Imuno-Histoquímica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Organogênese , Pericárdio/embriologia , Pericárdio/fisiologia , Células-Tronco/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
16.
Int J Dev Biol ; 58(9): 693-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25896205

RESUMO

The transcription factor SOX9 is a member of the SRY-related high-mobility-group box (SOX) superfamily of genes. In mammals, Sox9 plays important roles in many developmental processes including craniofacial, skeletal and heart morphogenesis, retinal and brain development, and gonad differentiation. Human mutations in SOX9 or the SOX9 promoter result in campomelic dysplasia, a severe genetic disorder, which disrupts skeletal, craniofacial, cardiac, neural and reproductive development. Due to the duplication of the teleost fish genome, zebrafish (Danio rerio) have two Sox9 genes: sox9a and sox9b. Loss of sox9b in zebrafish results in loss of function phenotypes that are similar to those observed in humans and mice. In order to generate a transgenic sox9b:EGFP reporter line, we cloned a 2450 bp fragment of the sox9b promoter and fused it to an EGFP reporter. Consistent with reported sox9b expression and function, we observed sox9b:EGFP in the developing heart, skeletal and craniofacial structures, brain, retina, and ovaries. Our resulting transgenic line is a useful tool for identifying and studying sox9b function in development and visualizing a number of zebrafish organs and tissues in which sox9b is normally expressed.


Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Fatores de Transcrição SOX9/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Coração/embriologia , Coração/fisiologia , Humanos , Técnicas Imunoenzimáticas , Hibridização In Situ , Camundongos , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Ovário/embriologia , Ovário/metabolismo , Retina/embriologia , Retina/metabolismo , Fatores de Transcrição SOX9/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...