Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31811399

RESUMO

Specialized ommatidia harboring polarization-sensitive photoreceptors exist in the 'dorsal rim area' (DRA) of virtually all insects. Although downstream elements have been described both anatomically and physiologically throughout the optic lobes and the central brain of different species, little is known about their cellular and synaptic adaptations and how these shape their functional role in polarization vision. We have previously shown that in the DRA of Drosophila melanogaster, two distinct types of modality-specific 'distal medulla' cell types (Dm-DRA1 and Dm-DRA2) are post-synaptic to long visual fiber photoreceptors R7 and R8, respectively. Here we describe additional neuronal elements in the medulla neuropil that manifest modality-specific differences in the DRA region, including DRA-specific neuronal morphology, as well as differences in the structure of pre- or post-synaptic membranes. Furthermore, we show that certain cell types (medulla tangential cells and octopaminergic neuromodulatory cells) specifically avoid contacts with polarization-sensitive photoreceptors. Finally, while certain transmedullary cells are specifically absent from DRA medulla columns, other subtypes show specific wiring differences while still connecting the DRA to the lobula complex, as has previously been described in larger insects. This hints towards a complex circuit architecture with more than one pathway connecting polarization-sensitive DRA photoreceptors with the central brain.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/metabolismo , Lobo Óptico de Animais não Mamíferos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Sinapses/fisiologia , Visão Ocular , Percepção Visual , Adaptação Fisiológica , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Lobo Óptico de Animais não Mamíferos/citologia , Estimulação Luminosa , Vias Visuais/fisiologia
2.
Glia ; 67(12): 2374-2398, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479171

RESUMO

Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC-a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC-a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss-of-function ClC-a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC-a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia-mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.


Assuntos
Canais de Cloreto/metabolismo , Rede Nervosa/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Nicho de Células-Tronco/fisiologia , Animais , Animais Geneticamente Modificados , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Canais de Cloreto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação com Perda de Função/fisiologia , Rede Nervosa/citologia
3.
Curr Biol ; 29(17): 2812-2825.e4, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402302

RESUMO

In the fly optic lobe, ∼800 highly stereotypical columnar microcircuits are arranged retinotopically to process visual information. Differences in cellular composition and synaptic connectivity within functionally specialized columns remain largely unknown. Here, we describe the cellular and synaptic architecture in medulla columns located downstream of photoreceptors in the dorsal rim area (DRA), where linearly polarized skylight is detected for guiding orientation responses. We show that only in DRA medulla columns both R7 and R8 photoreceptors target to the bona fide R7 target layer where they form connections with previously uncharacterized, modality-specific Dm neurons: two morphologically distinct DRA-specific cell types (termed Dm-DRA1 and Dm-DRA2) stratify in separate sublayers and exclusively contact polarization-sensitive DRA inputs, while avoiding overlaps with color-sensitive Dm8 cells. Using the activity-dependent GRASP and trans-Tango techniques, we confirm that DRA R7 cells are synaptically connected to Dm-DRA1, whereas DRA R8 form synapses with Dm-DRA2. Finally, using live imaging of ingrowing pupal photoreceptor axons, we show that DRA R7 and R8 termini reach layer M6 sequentially, thus separating the establishment of different synaptic connectivity in time. We propose that a duplication of R7→Dm circuitry in DRA ommatidia serves as an ideal adaptation for detecting linearly polarized skylight using orthogonal e-vector analyzers.


Assuntos
Drosophila melanogaster/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Orientação Espacial , Células Fotorreceptoras de Invertebrados/fisiologia , Animais
4.
J Neurogenet ; 31(4): 231-249, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29078717

RESUMO

The assembly of neural circuits relies on the accurate establishment of connections between synaptic partners. Precise wiring results from responses that neurons elicit to environmental cues and cell-cell contact events during development. A common design principle in both invertebrate and vertebrate adult nervous systems is the orderly array of columnar and layered synaptic units of certain neuropils. This similarity is particularly striking in the visual system, both at the structural and cell-type levels. Given the powerful genetic approaches and tools available in Drosophila, the fly visual system has been extensively used to probe how specific wiring patterns are achieved during development. In this review, we cover the developmental principles and molecular strategies that govern the assembly of columnar units (lamina cartridges and medulla columns), the formation of layers, afferent specific layer selection, and synaptogenesis in Drosophila. The mechanisms include: sequential developmental steps that ensure coordinated assembly of synaptic partners; anterograde and autocrine signaling; interactions between cell-surface molecules, or secreted molecules and their receptors that take place among neurons; and glia signaling to neurons.


Assuntos
Drosophila/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Neurônios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/crescimento & desenvolvimento , Animais , Drosophila/metabolismo , Rede Nervosa/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...