Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 6: 677, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236285

RESUMO

Metal and metal-oxide nanoparticles (NPs) are used in numerous applications and have high likelihood of entering engineered and natural environmental systems. Careful assessment of the interaction of these NPs with bacteria, particularly biofilm bacteria, is necessary. This perspective discusses mechanisms of NP interaction with bacteria and identifies challenges in understanding NP-biofilm interaction, considering fundamental material attributes and inherent complexities of biofilm structure. The current literature is reviewed, both for planktonic bacteria and biofilms; future challenges and complexities are identified, both in light of the literature and a dataset on the toxicity of silver NPs toward planktonic and biofilm bacteria. This perspective aims to highlight the complexities in such studies and emphasizes the need for systematic evaluation of NP-biofilm interaction.

2.
Nanomaterials (Basel) ; 5(2): 1102-1123, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28347054

RESUMO

Nanomaterial science and design have shifted from generating single passive nanoparticles to more complex and adaptive multi-component nanohybrids. These adaptive nanohybrids (ANHs) are designed to simultaneously perform multiple functions, while actively responding to the surrounding environment. ANHs are engineered for use as drug delivery carriers, in tissue-engineered templates and scaffolds, adaptive clothing, smart surface coatings, electrical switches and in platforms for diversified functional applications. Such ANHs are composed of carbonaceous, metallic or polymeric materials with stimuli-responsive soft-layer coatings that enable them to perform such switchable functions. Since ANHs are engineered to dynamically transform under different exposure environments, evaluating their environmental behavior will likely require new approaches. Literature on polymer science has established a knowledge core on stimuli-responsive materials. However, translation of such knowledge to environmental health and safety (EHS) of these ANHs has not yet been realized. It is critical to investigate and categorize the potential hazards of ANHs, because exposure in an unintended or shifting environment could present uncertainty in EHS. This article presents a perspective on EHS evaluation of ANHs, proposes a principle to facilitate their identification for environmental evaluation, outlines a stimuli-based classification for ANHs and discusses emerging properties and dynamic aspects for systematic EHS evaluation.

3.
Nanomaterials (Basel) ; 4(2): 372-407, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28344229

RESUMO

Conjugation of multiple nanomaterials has become the focus of recent materials development. This new material class is commonly known as nanohybrids or "horizon nanomaterials". Conjugation of metal/metal oxides with carbonaceous nanomaterials and overcoating or doping of one metal with another have been pursued to enhance material performance and/or incorporate multifunctionality into nano-enabled devices and processes. Nanohybrids are already at use in commercialized energy, electronics and medical products, which warrant immediate attention for their safety evaluation. These conjugated ensembles likely present a new set of physicochemical properties that are unique to their individual component attributes, hence increasing uncertainty in their risk evaluation. Established toxicological testing strategies and enumerated underlying mechanisms will thus need to be re-evaluated for the assessment of these horizon materials. This review will present a critical discussion on the altered physicochemical properties of nanohybrids and analyze the validity of existing nanotoxicology data against these unique properties. The article will also propose strategies to evaluate the conjugate materials' safety to help undertake future toxicological research on the nanohybrid material class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...