Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 8(2)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584662

RESUMO

A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. ß-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers. The affinity assay was optimised and characterised before a standard curve was performed in pure buffer conditions, giving a detection limit of 0.164 µg mL-1 as a direct binding assay. The detection limit can be further enhanced through the use of a sandwich assay and amplification with nanomaterials. However, this was not required here, as the detection limit achieved exceeded the required allergen detection levels of 2 µg mL-1 for ß-lactoglobulin. The binding affinities of the polyclonal antibody for BLG, expressed by the dissociation constant (KD), were equal to 2.59 × 10-9 M. The developed SPR-based sensor offers several advantages in terms of label-free detection, real-time measurements, potential on-line system and superior sensitivity when compared to ELISA-based techniques. The method is novel for this application and could be applied to wider food allergen risk management decision(s) in food manufacturing.


Assuntos
Lactoglobulinas/metabolismo , Leite/efeitos adversos , Ressonância de Plasmônio de Superfície/métodos , Alérgenos , Animais , Bovinos
2.
ACS Sens ; 3(2): 418-424, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29333852

RESUMO

Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches. Casein proteins constitute the biggest group of proteins in milk and hence are the most common milk protein allergen in food ingredients. As such, these proteins could present an ideal analyte for cleaning validation. In this work, molecularly imprinted polymer nanoparticles (nanoMIPs) with high affinity toward bovine α-casein were synthesized using a solid-phase imprinting method. The nanoMIPs were then characterized and incorporated into label free surface plasmon resonance (SPR) based sensor. The nanoMIPs demonstrated good binding affinity and selectivity toward α-casein (KD ∼ 10 × 10-9 M). This simple affinity sensor demonstrated the quantitative detection of α-casein achieving a detection limit of 127 ± 97.6 ng mL-1 (0.127 ppm) which is far superior to existing commercially available ELISA kits. Recoveries from spiked CIP wastewater samples were within the acceptable range (87-120%). The reported sensor could allow food manufacturers to adequately monitor and manage food allergen risk in food processing environments while ensuring that the food produced is safe for the consumer.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais/métodos , Caseínas/análise , Leite/química , Impressão Molecular , Nanopartículas/química , Polímeros/síntese química , Animais , Técnicas Biossensoriais/instrumentação , Manipulação de Alimentos , Hipersensibilidade Alimentar , Indústria de Processamento de Alimentos , Limite de Detecção , Polímeros/química , Ressonância de Plasmônio de Superfície
3.
Int J Food Microbiol ; 157(3): 375-83, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22726726

RESUMO

Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from plant material and allow uninhibited germination and growth of mould spores.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Carboxiliases/genética , Conservantes de Alimentos/metabolismo , Ácidos/metabolismo , Alcadienos/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Carboxiliases/metabolismo , Cinamatos/química , Descarboxilação , Fungos/metabolismo , Pentanos/metabolismo , Ácido Sórbico/metabolismo , Ácido Sórbico/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA