Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316310

RESUMO

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Assuntos
Ecossistema , Pergelissolo , Estações do Ano , Regiões Árticas , Mudança Climática
2.
MethodsX ; 8: 101331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430238

RESUMO

The majority of climate models predict severe increases in future temperature and precipitation in the Arctic. Increases in temperature and precipitation can lead to an intensification of the hydrologic cycle that strongly impacts Arctic environmental conditions. In order to investigate effects of future precipitation scenarios on ecosystems, precipitation manipulation experiments are being performed to simulate drought and extreme precipitation conditions. However, most of the existing research so far has been unevenly distributed, primarily focusing on temperate grasslands and woodlands. Despite large changes in the predicted precipitation and potentially high sensitivity of the Arctic tundra ecosystem to these changes, it is among the most understudied ecosystems for precipitation manipulation experiments. Gherardi and Sala (2013) presented a design for precipitation manipulation experiments that, relative to other methods at the time, was cheap, simplistic, and easily reproducible. In this study, we:•Present modifications to the original Gherardi and Sala (2013) design that are adapted to cold, harsh conditions, such as those present in the Siberian Arctic tundra.•Provide a detailed documentation of the improved design.•Validate our modified experimental design based on the first two years of our experiment.

3.
Evol Appl ; 12(1): 18-28, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30622632

RESUMO

The genomes of mammals contain thousands of deleterious mutations. It is important to be able to recognize them with high precision. In conservation biology, the small size of fragmented populations results in accumulation of damaging variants. Preserving animals with less damaged genomes could optimize conservation efforts. In breeding of farm animals, trade-offs between farm performance versus general fitness might be better avoided if deleterious mutations are well classified. In humans, the problem of such a precise classification has been successfully solved, in large part due to large databases of disease-causing mutations. However, this kind of information is very limited for other mammals. Here, we propose to better use information available on human mutations to enable classification of damaging mutations in other mammalian species. Specifically, we apply transfer learning-machine learning methods-improving small dataset for solving a focal problem (recognizing damaging mutations in our companion and farm animals) due to the use of much large datasets available for solving a related problem (recognizing damaging mutations in humans). We validate our tools using mouse and dog annotated datasets and obtain significantly better results in companion to the SIFT classifier. Then, we apply them to predict deleterious mutations in cattle genomewide dataset.

4.
Sci Rep ; 7(1): 4816, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684880

RESUMO

The Vavilov Institute of Plant Genetic Resources (VIR), in St. Petersburg, Russia, houses a unique genebank, with historical collections of landraces. When they were collected, the geographical distribution and genetic diversity of most crops closely reflected their historical patterns of cultivation established over the preceding millennia. We employed a combination of genomics, computational biology and phenotyping to characterize VIR's 147 chickpea accessions from Turkey and Ethiopia, representing chickpea's center of origin and a major location of secondary diversity. Genotyping by sequencing identified 14,059 segregating polymorphisms and genome-wide association studies revealed 28 GWAS hits in potential candidate genes likely to affect traits of agricultural importance. The proportion of polymorphisms shared among accessions is a strong predictor of phenotypic resemblance, and of environmental similarity between historical sampling sites. We found that 20 out of 28 polymorphisms, associated with multiple traits, including days to maturity, plant phenology, and yield-related traits such as pod number, localized to chromosome 4. We hypothesize that selection and introgression via inadvertent hybridization between more and less advanced morphotypes might have resulted in agricultural improvement genes being aggregated to genomic 'agro islands', and in genotype-to-phenotype relationships resembling widespread pleiotropy.


Assuntos
Cicer/genética , Produtos Agrícolas , Genoma de Planta , Ilhas Genômicas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Cicer/classificação , Biologia Computacional , Bases de Dados Genéticas , Etiópia , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Filogenia , Locos de Características Quantitativas , Federação Russa , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...